Vectorized zero finders

Prof. Dr. Erhan Coșkun
Karadeniz Technical Univesity,
Department of Mathematics,
E-posta:erhan@ktu.edu.tr

June, 2015

Outline

- Motivation

Outline

- Motivation
- vectorized bisection for real zeros of function in $[-r, r]$

Outline

- Motivation
- vectorized bisection for real zeros of function in $[-r, r]$
- vectorized Newton for all(real and complex) zeros of function in a $B(0, r)$

Outline

- Motivation
- vectorized bisection for real zeros of function in $[-r, r]$
- vectorized Newton for all(real and complex) zeros of function in a $B(0, r)$
- implementations in spectral theory

Outline

- Motivation
- vectorized bisection for real zeros of function in $[-r, r]$
- vectorized Newton for all(real and complex) zeros of function in a $B(0, r)$
- implementations in spectral theory
- vectorized Newton for Nonlinear Systems over a finite domain

Outline

- Motivation
- vectorized bisection for real zeros of function in $[-r, r]$
- vectorized Newton for all(real and complex) zeros of function in a $B(0, r)$
- implementations in spectral theory
- vectorized Newton for Nonlinear Systems over a finite domain
- implementations in plane autonomous systems

Motivation(typical examples)

- Example 1

$$
\begin{aligned}
-u^{\prime \prime}(x) & =\lambda u(x), 0<x<L \\
u(0)+a u^{\prime}(0) & =0 \\
u(L)+b u^{\prime}(L) & =0, a>b>0[\text { DuChateau }]
\end{aligned}
$$

Motivation(typical examples)

- Example 1

$$
\begin{aligned}
-u^{\prime \prime}(x) & =\lambda u(x), 0<x<L \\
u(0)+a u^{\prime}(0) & =0 \\
u(L)+b u^{\prime}(L) & =0, a>b>0[\text { DuChateau }]
\end{aligned}
$$

- $\lambda>0, \lambda_{n}=k_{n}^{2}, k_{n} \neq 0$, requires

$$
\tan k_{n} L-\frac{(a-b) k_{n}}{1+a b k_{n}^{2}}=0, n=1,2, \ldots
$$

Motivation(typical examples)

- Example 1

$$
\begin{aligned}
-u^{\prime \prime}(x) & =\lambda u(x), 0<x<L \\
u(0)+a u^{\prime}(0) & =0 \\
u(L)+b u^{\prime}(L) & =0, a>b>0[\text { DuChateau }]
\end{aligned}
$$

- $\lambda>0, \lambda_{n}=k_{n}^{2}, k_{n} \neq 0$, requires

$$
\tan k_{n} L-\frac{(a-b) k_{n}}{1+a b k_{n}^{2}}=0, n=1,2, \ldots
$$

- so to generalize, we need to find the zeros of given $f(x)$ over a given interval.

Motivation(typical examples)

- Example 2

$$
\int_{a}^{b} w(x) f(x) d x \simeq \sum_{i=1}^{n+1} w_{i} f\left(x_{i}\right)
$$

Motivation(typical examples)

- Example 2

$$
\int_{a}^{b} w(x) f(x) d x \simeq \sum_{i=1}^{n+1} w_{i} f\left(x_{i}\right)
$$

- $\left\{p_{i}(x)\right\}_{i=0}^{n+1}$ are orthogonal with respect to $w(x)$ on $[a, b]$,

Motivation(typical examples)

- Example 2

$$
\int_{a}^{b} w(x) f(x) d x \simeq \sum_{i=1}^{n+1} w_{i} f\left(x_{i}\right)
$$

- $\left\{p_{i}(x)\right\}_{i=0}^{n+1}$ are orthogonal with respect to $w(x)$ on $[a, b]$,
- $x_{i}, i=1,2, \ldots, n+1$ are zeros of $p_{n+1}(x)$, (Legendre, Chebyscheff, \ldots)

Motivation(typical examples)

- Example 2

$$
\int_{a}^{b} w(x) f(x) d x \simeq \sum_{i=1}^{n+1} w_{i} f\left(x_{i}\right)
$$

- $\left\{p_{i}(x)\right\}_{i=0}^{n+1}$ are orthogonal with respect to $w(x)$ on $[a, b]$,
- $x_{i}, i=1,2, \ldots, n+1$ are zeros of $p_{n+1}(x)$, (Legendre, Chebyscheff, \ldots)
- Furthermore, for oscillatory functions, it is better to divide the range of integration into subintervals with end points corresponding to consecuitive zeros of f to avoid cancellations. [Davis \& Rabinowitz]

Motivation(typical examples)

- Example 3

Motivation(typical examples)

- Example 3
- Determine the stationary points of

$$
\begin{aligned}
& \frac{d x}{d t}=f(x, y) \\
& \frac{d y}{d t}=g(x, y)
\end{aligned}
$$

over a finite domain, $[a, b] \times[c, d]$

Recall Scalar Bisection Method

- Given a continuous function f defined on $[a, b]$ with $f(a) f(b)<0$, $\exists c \in(a, b)$ such that $f(c)=0$.

Recall Scalar Bisection Method

- Given a continuous function f defined on $[a, b]$ with $f(a) f(b)<0$, $\exists c \in(a, b)$ such that $f(c)=0$.
- Algorithm

Recall Scalar Bisection Method

- Given a continuous function f defined on $[a, b]$ with $f(a) f(b)<0$, $\exists c \in(a, b)$ such that $f(c)=0$.
- Algorithm
(1) input: f, a, b, ϵ

Recall Scalar Bisection Method

- Given a continuous function f defined on $[a, b]$ with $f(a) f(b)<0$, $\exists c \in(a, b)$ such that $f(c)=0$.
- Algorithm
(1) input: f, a, b, ϵ
(2) if $f(a) f(b)>0$ then exit(method does not apply to the problem)

Recall Scalar Bisection Method

- Given a continuous function f defined on $[a, b]$ with $f(a) f(b)<0$, $\exists c \in(a, b)$ such that $f(c)=0$.
- Algorithm
(1) input: f, a, b, ϵ
(2) if $f(a) f(b)>0$ then exit(method does not apply to the problem)
(3) $c=(a+b) / 2$

Recall Scalar Bisection Method

- Given a continuous function f defined on $[a, b]$ with $f(a) f(b)<0$, $\exists c \in(a, b)$ such that $f(c)=0$.
- Algorithm
(1) input: f, a, b, ϵ
(2) if $f(a) f(b)>0$ then exit(method does not apply to the problem)
(3) $c=(a+b) / 2$
(9) if $f(a) f(c)<0$ then $b=c$, else $a=c$ (new interval that contains the zero is also called $[a, b]$)

Recall Scalar Bisection Method

- Given a continuous function f defined on $[a, b]$ with $f(a) f(b)<0$, $\exists c \in(a, b)$ such that $f(c)=0$.
- Algorithm
(1) input: f, a, b, ϵ
(2) if $f(a) f(b)>0$ then exit(method does not apply to the problem)
(3) $c=(a+b) / 2$
(9) if $f(a) f(c)<0$ then $b=c$, else $a=c$ (new interval that contains the zero is also called $[a, b]$)
(0) while $|f(c)|>\epsilon$ print $a, c, b, f(c)$ and go to (3); else return c

Recall Scalar Bisection Method

- Given a continuous function f defined on $[a, b]$ with $f(a) f(b)<0$, $\exists c \in(a, b)$ such that $f(c)=0$.
- Algorithm
(1) input: f, a, b, ϵ
(2) if $f(a) f(b)>0$ then exit(method does not apply to the problem)
(3) $c=(a+b) / 2$
(0) if $f(a) f(c)<0$ then $b=c$, else $a=c$ (new interval that contains the zero is also called $[a, b]$)
(6) while $|f(c)|>\epsilon$ print $a, c, b, f(c)$ and go to (3); else return c
- determines a single zero! Can we generalize this method to determine simultaneously all zeros of f over $[a, b]$?

Begin with locating intervals on which the function changes sign

Begin with locating intervals on which the function changes sign

- $A=\left[a_{1}, a_{2}, \ldots, a_{n}\right]$; vector of left end points

Begin with locating intervals on which the function changes sign

- $A=\left[a_{1}, a_{2}, \ldots, a_{n}\right]$; vector of left end points
- $B=\left[b_{1}, b_{2}, \ldots, b_{n}\right]$; vector of right end points

An algorithm to determine the sets A and B, as well as Zeros we may come across.

- bisect_intervals

An algorithm to determine the sets A and B, as well as Zeros we may come across.

- bisect_intervals
(1) input: $f, a, b, d x$

An algorithm to determine the sets A and B, as well as Zeros we may come across.

- bisect intervals
(1) input: $f, a, b, d x$
(2) $A:[] B:[]$

An algorithm to determine the sets A and B, as well as Zeros we may come across.

- bisect_intervals
(1) input: $f, a, b, d x$
(2) $A:[] B:[]$
(3) zeros:[] (to hold zeros that we may come across)

An algorithm to determine the sets A and B, as well as Zeros we may come across.

- bisect_intervals
(1) input: $f, a, b, d x$
(2) $A:[] B:[]$
(3) zeros:[] (to hold zeros that we may come across)
(9) $j u m p=1$ (allowed numerical variation in $[a, a+d x]$ for a continuous function);

An algorithm to determine the sets A and B, as well as Zeros we may come across.

- bisect_intervals
(1) input: $f, a, b, d x$
(2) $A:[] B:[]$
(3) zeros:[] (to hold zeros that we may come across)
(9) jump $=1$ (allowed numerical variation in $[a, a+d x]$ for a continuous function);
(3) test $=1$ (used for stopping criteria)

An algorithm to determine the sets A and B, as well as Zeros we may come across.

- bisect_intervals
(1) input: $f, a, b, d x$
(2) $A:[] B:[]$
(3) zeros:[] (to hold zeros that we may come across)
(9) jump $=1$ (allowed numerical variation in $[a, a+d x]$ for a continuous function);
(5) test $=1$ (used for stopping criteria)
(0) while test $=1$

An algorithm to determine the sets A and B, as well as Zeros we may come across.

- bisect_intervals
(1) input: $f, a, b, d x$
(2) $A:[] B:[]$
(3) zeros:[] (to hold zeros that we may come across)
(9) jump $=1$ (allowed numerical variation in $[a, a+d x]$ for a continuous function);
(3) test $=1$ (used for stopping criteria)
(0) while test $=1$
- if $f(a)=0$ then add a to the vector of zeros

An algorithm to determine the sets A and B, as well as Zeros we may come across.

- bisect_intervals
(1) input: $f, a, b, d x$
(2) $A:[] B:[]$
(3) zeros:[] (to hold zeros that we may come across)
(9) jump $=1$ (allowed numerical variation in $[a, a+d x]$ for a continuous function);
(3) test $=1$ (used for stopping criteria)
(0) while test $=1$
- if $f(a)=0$ then add a to the vector of zeros
- if $f(a+d x)=0$ then add $a+d x$ to the vector of zeros

An algorithm to determine the sets A and B, as well as Zeros we may come across.

- bisect_intervals
(1) input: $f, a, b, d x$
(2) $A:[] B:[]$
(3) zeros:[] (to hold zeros that we may come across)
(C) jump $=1$ (allowed numerical variation in $[a, a+d x]$ for a continuous function);
(5) test $=1$ (used for stopping criteria)
(0) while test $=1$
- if $f(a)=0$ then add a to the vector of zeros
- if $f(a+d x)=0$ then add $a+d x$ to the vector of zeros
- if $f(a) * f(a+d x)<0$ and $\operatorname{abs}(f(a)-f(a+d x))<j u m p$ then add a to A and $a+d x$ to B

An algorithm to determine the sets A and B, as well as Zeros we may come across.

- bisect_intervals
(1) input: $f, a, b, d x$
(2) $A:[] B:[]$
(3) zeros:[] (to hold zeros that we may come across)
(C) jump $=1$ (allowed numerical variation in $[a, a+d x]$ for a continuous function);
(5) test $=1$ (used for stopping criteria)
(0) while test $=1$
- if $f(a)=0$ then add a to the vector of zeros
- if $f(a+d x)=0$ then add $a+d x$ to the vector of zeros
- if $f(a) * f(a+d x)<0$ and $\operatorname{abs}(f(a)-f(a+d x))<j u m p$ then add a to A and $a+d x$ to B
- $a=a+d x$

An algorithm to determine the sets A and B, as well as Zeros we may come across.

- bisect_intervals
(1) input: $f, a, b, d x$
(2) $A:[] B:[]$
(3) zeros:[] (to hold zeros that we may come across)
(9) $j u m p=1$ (allowed numerical variation in $[a, a+d x]$ for a continuous function);
(5) test $=1$ (used for stopping criteria)
(0) while test $=1$
- if $f(a)=0$ then add a to the vector of zeros
- if $f(a+d x)=0$ then add $a+d x$ to the vector of zeros
- if $f(a) * f(a+d x)<0$ and $\operatorname{abs}(f(a)-f(a+d x))<j u m p$ then add a to A and $a+d x$ to B
- $a=a+d x$
- if $a>=b$ then test $=0$

An algorithm to determine the sets A and B , as well as Zeros we may come across.

- bisect_intervals
(1) input: $f, a, b, d x$
(2) $A:[] B:[]$
(3) zeros:[] (to hold zeros that we may come across)
(9) $j u m p=1$ (allowed numerical variation in $[a, a+d x]$ for a continuous function);
(5) test $=1$ (used for stopping criteria)
(0) while test $=1$
- if $f(a)=0$ then add a to the vector of zeros
- if $f(a+d x)=0$ then add $a+d x$ to the vector of zeros
- if $f(a) * f(a+d x)<0$ and $\operatorname{abs}(f(a)-f(a+d x))<j u m p$ then add a to A and $a+d x$ to B
- $a=a+d x$
- if $a>=b$ then test $=0$
(7) return A and B, as well as vector of zeros.

bisect intervals

- $f(x)=\cos \left(6 \cos ^{-1}(x)\right)$; (we know the zeros of $\left.f\right)$

bisect intervals

- $f(x)=\cos \left(6 \cos ^{-1}(x)\right)$; (we know the zeros of $\left.f\right)$
- \gg [AB,zeros $]=$ bisect_intervals $(\mathrm{f},-1,1,0.1)$

bisect intervals

- $f(x)=\cos \left(6 \cos ^{-1}(x)\right)$; (we know the zeros of $\left.f\right)$
- >> [AB,zeros]=bisect_intervals(f,-1,1,0.1)
- $A B=$

bisect_intervals

- $f(x)=\cos \left(6 \cos ^{-1}(x)\right) ;($ we know the zeros of $f)$
- >> $[\mathrm{AB}$, zeros $]=$ bisect_intervals $(\mathrm{f},-1,1,0.1)$
- $\mathrm{AB}=$
- -1.0000 -0.8000 -0.3000 0.20000 .70000 .9000

bisect_intervals

- $f(x)=\cos \left(6 \cos ^{-1}(x)\right) ;($ we know the zeros of $f)$
- >> [AB,zeros]=bisect_intervals(f,-1,1,0.1)
- $A B=$
- -1.0000 -0.8000 -0.3000 0.20000 .70000 .9000
- -0.9000 -0.7000-0.2000 0.30000 .80001 .0000

bisect_intervals

- $f(x)=\cos \left(6 \cos ^{-1}(x)\right) ;($ we know the zeros of $f)$
- >> [AB,zeros]=bisect_intervals(f,-1,1,0.1)
- $\mathrm{AB}=$
- -1.0000 -0.8000 -0.3000 0.20000 .70000 .9000
- -0.9000 -0.7000 -0.2000 0.30000 .80001 .0000
- zeros =

bisect_intervals

- $f(x)=\cos \left(6 \cos ^{-1}(x)\right) ;($ we know the zeros of $f)$
- >> [AB,zeros]=bisect_intervals(f,-1,1,0.1)
- $\mathrm{AB}=$
- -1.0000 -0.8000 -0.3000 0.20000 .70000 .9000
- -0.9000 -0.7000 -0.2000 0.30000 .80001 .0000
- zeros $=$
- []

Vectorized Bisection algorithm

- Algorithm

Vectorized Bisection algorithm

- Algorithm
(1) input $f, a, b, d x$

Vectorized Bisection algorithm

- Algorithm
(1) input $f, a, b, d x$
(2) call $[A B$, zeros $]=b i$ sec t_{-}intervals $(f, a, b, d x)$ for subintervals $A B$, zeros

Vectorized Bisection algorithm

- Algorithm
(1) input $f, a, b, d x$
(2) call $[A B$, zeros $]=b i \sec t$ _intervals $(f, a, b, d x)$ for subintervals $A B$, zeros
(3) set $X=$ zeros, $A=A B(:, 1) ; B=A B(:, 2)$.

Vectorized Bisection algorithm

- Algorithm
(1) input $f, a, b, d x$
(2) call $[A B$, zeros $]=b i \sec t$ _intervals $(f, a, b, d x)$ for subintervals $A B$, zeros
(3) set $X=$ zeros, $A=A B(:, 1) ; B=A B(:, 2)$.
(4) if A and X are empty, exit.

Vectorized Bisection algorithm

- Algorithm
(1) input $f, a, b, d x$
(2) call $[A B$, zeros $]=b i \sec t$ _intervals $(f, a, b, d x)$ for subintervals $A B$, zeros
(3) set $X=$ zeros, $A=A B(:, 1) ; B=A B(:, 2)$.
(4) if A and X are empty, exit.
(5) if A is empty and X is nonempty, return X.

Vectorized Bisection algorithm

- Algorithm
(1) input $f, a, b, d x$
(2) call $[A B$, zeros $]=b i \sec t$ _intervals $(f, a, b, d x)$ for subintervals $A B$, zeros
(3) set $X=$ zeros, $A=A B(:, 1) ; B=A B(:, 2)$.
(4) if A and X are empty, exit.
(5) if A is empty and X is nonempty, return X.
(6) set length $=1, e p s=1 e-5$,

Vectorized Bisection algorithm

- Algorithm
(1) input $f, a, b, d x$
(2) call $[A B$, zeros $]=b i \sec t$ _intervals $(f, a, b, d x)$ for subintervals $A B$, zeros
(3) set $X=$ zeros, $A=A B(:, 1) ; B=A B(:, 2)$.
(4) if A and X are empty, exit.
(5) if A is empty and X is nonempty, return X.
(6) set length $=1$, eps $=1 e-5$,
(7) while $\|$ length $\|>$ eps do

Vectorized Bisection algorithm

- Algorithm
(1) input $f, a, b, d x$
(2) call $[A B$, zeros $]=b i \sec t$ _intervals $(f, a, b, d x)$ for subintervals $A B$, zeros
(3) set $X=$ zeros, $A=A B(:, 1) ; B=A B(:, 2)$.
(4) if A and X are empty, exit.
(5) if A is empty and X is nonempty, return X.
(6) set length $=1$, eps $=1 e-5$,
(7) while $\|$ length $\|>e p s$ do
- $C=(A+B) / 2$, vector of midpoints

Vectorized Bisection algorithm

- Algorithm
(1) input $f, a, b, d x$
(2) call $[A B$, zeros $]=b i \sec t$ _intervals $(f, a, b, d x)$ for subintervals $A B$, zeros
(3) set $X=$ zeros, $A=A B(:, 1) ; B=A B(:, 2)$.
(4) if A and X are empty, exit.
(5) if A is empty and X is nonempty, return X.
(6) set length $=1$, eps $=1 e-5$,
(7) while $\|$ length $\|>$ eps do
- $C=(A+B) / 2$, vector of midpoints
- determine the set of indices ii for which $f(A) . * f(C)<0$

Vectorized Bisection algorithm

- Algorithm
(1) input $f, a, b, d x$
(2) call $[A B$, zeros $]=b i \sec t$ _intervals $(f, a, b, d x)$ for subintervals $A B$, zeros
(3) set $X=$ zeros, $A=A B(:, 1) ; B=A B(:, 2)$.
(4) if A and X are empty, exit.
(5) if A is empty and X is nonempty, return X.
(6) set length $=1$, eps $=1 e-5$,
(7) while $\|$ length $\|>$ eps do
- $C=(A+B) / 2$, vector of midpoints
- determine the set of indices ii for which $f(A) . * f(C)<0$
- if the set $i i \neq \varnothing$, set $B(i i)=C(i i)$.

Vectorized Bisection algorithm

- Algorithm
(1) input $f, a, b, d x$
(2) call $[A B$, zeros $]=b i \sec t$ _intervals $(f, a, b, d x)$ for subintervals $A B$, zeros
(3) set $X=$ zeros, $A=A B(:, 1) ; B=A B(:, 2)$.
(4) if A and X are empty, exit.
(5) if A is empty and X is nonempty, return X.
(6) set length $=1$, eps $=1 e-5$,
(7) while $\|$ length $\|>e p s$ do
- $C=(A+B) / 2$, vector of midpoints
- determine the set of indices ii for which $f(A) . * f(C)<0$
- if the set $i i \neq \varnothing$, set $B(i i)=C(i i)$.
- determine the set of indices $j j$ for which $f(A) . * f(C)>=0$.

Vectorized Bisection algorithm

- Algorithm
(1) input $f, a, b, d x$
(2) call $[A B$, zeros $]=b i \sec t$ _intervals $(f, a, b, d x)$ for subintervals $A B$, zeros
(3) set $X=$ zeros, $A=A B(:, 1) ; B=A B(:, 2)$.
(4) if A and X are empty, exit.
(5) if A is empty and X is nonempty, return X.
(6) set length $=1$, eps $=1 e-5$,
(7) while $\|$ length $\|>e p s$ do
- $C=(A+B) / 2$, vector of midpoints
- determine the set of indices ii for which $f(A) . * f(C)<0$
- if the set $i i \neq \varnothing$, set $B(i i)=C(i i)$.
- determine the set of indices $j j$ for which $f(A) . * f(C)>=0$.
- if the set $j j \neq \varnothing$, set $A(j j)=C(j j)$.

Vectorized Bisection algorithm

- Algorithm
(1) input $f, a, b, d x$
(2) call $[A B$, zeros $]=b i \sec t$ _intervals $(f, a, b, d x)$ for subintervals $A B$, zeros
(3) set $X=$ zeros, $A=A B(:, 1) ; B=A B(:, 2)$.
(4) if A and X are empty, exit.
(5) if A is empty and X is nonempty, return X.
(6) set length $=1$, eps $=1 e-5$,
(7) while $\|$ length $\|>e p s$ do
- $C=(A+B) / 2$, vector of midpoints
- determine the set of indices ii for which $f(A) . * f(C)<0$
- if the set $i i \neq \varnothing$, set $B(i i)=C(i i)$.
- determine the set of indices $j j$ for which $f(A) . * f(C)>=0$.
- if the set $j j \neq \varnothing$, set $A(j j)=C(j j)$.
- set length $=\|B-A\|$

Vectorized Bisection algorithm

- Algorithm
(1) input $f, a, b, d x$
(2) call $[A B$, zeros $]=b i \sec t_{-} \operatorname{intervals}(f, a, b, d x)$ for subintervals $A B$, zeros
(3) set $X=$ zeros, $A=A B(:, 1) ; B=A B(:, 2)$.
(4) if A and X are empty, exit.
(5) if A is empty and X is nonempty, return X.
(6) set length $=1$, eps $=1 e-5$,
(7) while $\|$ length $\|>e p s$ do
- $C=(A+B) / 2$, vector of midpoints
- determine the set of indices ii for which $f(A) . * f(C)<0$
- if the set $i i \neq \varnothing$, set $B(i i)=C(i i)$.
- determine the set of indices $j j$ for which $f(A) . * f(C)>=0$.
- if the set $j j \neq \varnothing$, set $A(j j)=C(j j)$.
- set length $=\|B-A\|$
- determine the indices $j 0$ for which length $<=e p s$ or $\|f(C)\|<e p s$

Vectorized Bisection algorithm

- Algorithm
(1) input $f, a, b, d x$
(2) call $[A B$, zeros $]=b i \sec t$ _intervals $(f, a, b, d x)$ for subintervals $A B$, zeros
(3) set $X=$ zeros, $A=A B(:, 1) ; B=A B(:, 2)$.
(4) if A and X are empty, exit.
(5) if A is empty and X is nonempty, return X.
(6) set length $=1$, eps $=1 e-5$,
(7) while $\|$ length $\|>e p s$ do
- $C=(A+B) / 2$, vector of midpoints
- determine the set of indices ii for which $f(A) . * f(C)<0$
- if the set $i i \neq \varnothing$, set $B(i i)=C(i i)$.
- determine the set of indices $j j$ for which $f(A) . * f(C)>=0$.
- if the set $j j \neq \varnothing$, set $A(j j)=C(j j)$.
- set length $=\|B-A\|$
- determine the indices $j 0$ for which length $<=e p s$ or $\|f(C)\|<e p s$
- add $C(j 0)$ to X, i.e., $X=[X ; C(j 0)]$.

Vectorized Bisection algorithm

- Algorithm
(1) input $f, a, b, d x$
(2) call $[A B$, zeros $]=b i \sec t$ _intervals $(f, a, b, d x)$ for subintervals $A B$, zeros
(3) set $X=$ zeros, $A=A B(:, 1) ; B=A B(:, 2)$.
(4) if A and X are empty, exit.
(5) if A is empty and X is nonempty, return X.
(6) set length $=1$, eps $=1 e-5$,
(7) while $\|$ length $\|>e p s$ do
- $C=(A+B) / 2$, vector of midpoints
- determine the set of indices ii for which $f(A) . * f(C)<0$
- if the set $i i \neq \varnothing$, set $B(i i)=C(i i)$.
- determine the set of indices $j j$ for which $f(A) . * f(C)>=0$.
- if the set $j j \neq \varnothing$, set $A(j j)=C(j j)$.
- set length $=\|B-A\|$
- determine the indices $j 0$ for which length $<=e p s$ or $\|f(C)\|<e p s$
- add $C(j 0)$ to X, i.e., $X=[X ; C(j 0)]$.
- determine the indices $j 1$ for which length $>$ eps

Vectorized Bisection algorithm

- Algorithm
(1) input $f, a, b, d x$
(2) call $[A B$, zeros $]=b i \sec t$ _intervals $(f, a, b, d x)$ for subintervals $A B$, zeros
(3) set $X=$ zeros, $A=A B(:, 1) ; B=A B(:, 2)$.
(4) if A and X are empty, exit.
(5) if A is empty and X is nonempty, return X.
(6) set length $=1$, eps $=1 e-5$,
(7) while $\|$ length $\|>e p s$ do
- $C=(A+B) / 2$, vector of midpoints
- determine the set of indices ii for which $f(A) . * f(C)<0$
- if the set $i i \neq \varnothing$, set $B(i i)=C(i i)$.
- determine the set of indices $j j$ for which $f(A) . * f(C)>=0$.
- if the set $j j \neq \varnothing$, set $A(j j)=C(j j)$.
- set length $=\|B-A\|$
- determine the indices $j 0$ for which length $<=e p s$ or $\|f(C)\|<e p s$
- add $C(j 0)$ to X, i.e., $X=[X ; C(j 0)]$.
- determine the indices $j 1$ for which length $>$ eps
- if $j 1 \neq \varnothing$ then set $A=A(j 1)$ ve $B=B(j 1)$.

Vectorized Bisection algorithm

- Algorithm
(1) input $f, a, b, d x$
(2) call $[A B$, zeros $]=b i \sec t$ _intervals $(f, a, b, d x)$ for subintervals $A B$, zeros
(3) set $X=$ zeros, $A=A B(:, 1) ; B=A B(:, 2)$.
(4) if A and X are empty, exit.
(5) if A is empty and X is nonempty, return X.
(6) set length $=1$, eps $=1 e-5$,
(7) while $\|$ length $\|>e p s$ do
- $C=(A+B) / 2$, vector of midpoints
- determine the set of indices ii for which $f(A) . * f(C)<0$
- if the set $i i \neq \varnothing$, set $B(i i)=C(i i)$.
- determine the set of indices $j j$ for which $f(A) . * f(C)>=0$.
- if the set $j j \neq \varnothing$, set $A(j j)=C(j j)$.
- set length $=\|B-A\|$
- determine the indices $j 0$ for which length $<=e p s$ or $\|f(C)\|<e p s$
- add $C(j 0)$ to X, i.e., $X=[X ; C(j 0)]$.
- determine the indices $j 1$ for which length $>$ eps
- if $j 1 \neq \varnothing$ then set $A=A(j 1)$ ve $B=B(j 1)$.
(8) return X

Vectorized Bisection

- Simple tests

Vectorized Bisection

- Simple tests
- $\gg f(x)=\cos \left(6 \cos ^{-1}(x)\right)$;

Vectorized Bisection

- Simple tests
- $\gg f(x)=\cos \left(6 \cos ^{-1}(x)\right)$;
- $\gg X=\operatorname{bisectv}(f,-1,1,0.1)$

Vectorized Bisection

- Simple tests
- $\gg f(x)=\cos \left(6 \cos ^{-1}(x)\right)$;
- $\gg X=\operatorname{bisectv}(f,-1,1,0.1)$
- $X=-0.9659-0.7071-0.2588 \quad 0.2588 \quad 0.70710 .9659$

Vectorized Bisection

- Simple tests
- $\gg f(x)=\cos \left(6 \cos ^{-1}(x)\right)$;
- $\gg X=\operatorname{bisectv}(f,-1,1,0.1)$
- $X=-0.9659-0.7071-0.2588 \quad 0.2588 \quad 0.70710 .9659$

Vectorized Bisection

- $f(x)=\tan (x)-x$;

Vectorized Bisection

- $f(x)=\tan (x)-x$;
- $\gg X=\operatorname{bisectv}(f,-5,5,0.1)$

Vectorized Bisection

- $f(x)=\tan (x)-x$;
- $\gg X=\operatorname{bisectv}(f,-5,5,0.1)$
- $X=-4.49340 .00004 .4934$

Vectorized Bisection

- $f(x)=\tan (x)-x$;
- $\gg X=\operatorname{bisectv}(f,-5,5,0.1)$
- $X=-4.49340 .00004 .4934$

Vectorized Bisection(applications to spectral theory)

$$
\begin{aligned}
-u^{\prime \prime}(x) & =\lambda u(x), 0<x<L \\
u(0)+a u^{\prime}(0) & =0 \\
u(L)+b u^{\prime}(L) & =0, a>b>0[\text { DuChateau }]
\end{aligned}
$$

Vectorized Bisection(applications to spectral theory)

$$
\begin{aligned}
-u^{\prime \prime}(x) & =\lambda u(x), 0<x<L \\
u(0)+a u^{\prime}(0) & =0 \\
u(L)+b u^{\prime}(L) & =0, a>b>0[\text { DuChateau }]
\end{aligned}
$$

- $\lambda>0, \lambda_{n}=k_{n}^{2}, k_{n} \neq 0$, requires

$$
\tan k_{n} L=\frac{(a-b) k_{n}}{1+a b k_{n}^{2}}, n=1,2, \ldots
$$

Vectorized Bisection(applications to spectral theory)

- $L=1 ; a=2, b=1$;

Vectorized Bisection(applications to spectral theory)

- $\mathrm{L}=1 ; \mathrm{a}=2, \mathrm{~b}=1$;
- $f(x)=\tan (x)-x . /\left(1+2 x .^{\wedge} 2\right)$

Vectorized Bisection(applications to spectral theory)

- $\mathrm{L}=1 ; a=2, b=1$;
- $f(x)=\tan (x)-x . /\left(1+2 x .^{\wedge} 2\right)$

Vectorized Bisection(applications to spectral theory)

- $\mathrm{L}=1 ; \mathrm{a}=2, \mathrm{~b}=1$;
- $f(x)=\tan (x)-x . /\left(1+2 x .^{\wedge} 2\right)$

- $\gg X=\operatorname{bisectv}(f,-5,5,0.1)$

Vectorized Bisection(applications to spectral theory)

- $\mathrm{L}=1 ; \mathrm{a}=2, \mathrm{~b}=1$;
- $f(x)=\tan (x)-x . /\left(1+2 x .^{\wedge} 2\right)$

- $\gg X=\operatorname{bisectv}(f,-5,5,0.1)$
- $X=-3.28600 .00003 .2860$

Vectorized Bisection(applications to spectral theory)

- $\mathrm{L}=1 ; \mathrm{a}=2, \mathrm{~b}=1$;
- $f(x)=\tan (x)-x . /\left(1+2 x .^{\wedge} 2\right)$

- $\gg X=\operatorname{bisectv}(f,-5,5,0.1)$
- $X=-3.2860 \quad 0.00003 .2860$
- Notice the points of discontinuities;

Vectorized Bisection(applications to spectral theory)

- $\mathrm{L}=1 ; a=2, b=1$;
- $f(x)=\tan (x)-x . /\left(1+2 x .^{\wedge} 2\right)$

- $\gg X=\operatorname{bisectv}(f,-5,5,0.1)$
- $X=-3.28600 .00003 .2860$
- Notice the points of discontinuities;
- fzero(f,1), MATLAB ,ans $=1.5708, \gg \mathrm{f}(\mathrm{ans})$,ans
$=-1.2093 \mathrm{e}+015$ (wrong!)

Vectorized Newton(determines all zeros of a function in $B(0, r)$)

- Algorithm

Vectorized Newton(determines all zeros of a function in B(0,r))

- Algorithm
(1) input $f, d f, r, d x$, zerotype

Vectorized Newton(determines all zeros of a function in $B(0, r)$)

- Algorithm
(1) input $f, d f, r, d x$, zerotype
(2) zerotype $=0$ (real zeros only), zerotype $=1$, all zeros

Vectorized Newton(determines all zeros of a function in $B(0, r)$)

- Algorithm
(1) input $f, d f, r, d x$, zerotype
(2) zerotype $=0$ (real zeros only), zerotype $=1$, all zeros
(3) ifzerotype $=0$, set $Z 0=-r: d x$: r;

Vectorized Newton(determines all zeros of a function in $B(0, r)$)

- Algorithm
(1) input $f, d f, r, d x$, zerotype
(2) zerotype $=0$ (real zeros only), zerotype $=1$, all zeros
(3) ifzerotype $=0$, set $Z 0=-r: d x$: r;
(1) else set $x=-r: d x: r, y=x ; Z=X+i * Y$;matrix of initial values

Vectorized Newton(determines all zeros of a function in $B(0, r)$)

- Algorithm
(1) input $f, d f, r, d x$, zerotype
(2) zerotype $=0$ (real zeros only), zerotype $=1$, all zeros
(3) ifzerotype $=0$, set $Z 0=-r: d x: r$;
(1) else set $x=-r: d x: r, y=x ; Z=X+i * Y$;matrix of initial values
- $Z 0=$ vectorize (Z); vector of initial values

Vectorized Newton(determines all zeros of a function in $B(0, r)$)

- Algorithm
(1) input $f, d f, r, d x$, zerotype
(2) zerotype $=0$ (real zeros only), zerotype $=1$, all zeros
(3) ifzerotype $=0$, set $Z 0=-r: d x$: r;
(1) else set $x=-r: d x: r, y=x ; Z=X+i * Y$;matrix of initial values
- $Z 0=$ vectorize (Z); vector of initial values
(3) until convergence do

Vectorized Newton(determines all zeros of a function in $B(0, r)$)

- Algorithm
(1) input $f, d f, r, d x$, zerotype
(2) zerotype $=0$ (real zeros only), zerotype $=1$, all zeros
(3) ifzerotype $=0$, set $Z 0=-r: d x: r$;
(1) else set $x=-r: d x: r, y=x ; Z=X+i * Y$;matrix of initial values
- $Z 0=$ vectorize (Z); vector of initial values
(5) until convergence do

$$
\text { - } Z 1=Z 0-f(Z 0) . / d f(Z 0) \text {; }
$$

Vectorized Newton(determines all zeros of a function in $B(0, r)$)

- Algorithm
(1) input $f, d f, r, d x$, zerotype
(2) zerotype $=0$ (real zeros only), zerotype $=1$, all zeros
(3) ifzerotype $=0$, set $Z 0=-r: d x$: r;
(1) else set $x=-r: d x: r, y=x ; Z=X+i * Y$;matrix of initial values
- $Z 0=$ vectorize (Z); vector of initial values
(3) until convergence do
- $Z 1=Z 0-f(Z 0) . / d f(Z 0)$;
- difference=abs(Z1-Z0);

Vectorized Newton(determines all zeros of a function in $B(0, r)$)

- Algorithm
(1) input $f, d f, r, d x$, zerotype
(2) zerotype $=0$ (real zeros only), zerotype $=1$, all zeros
(3) ifzerotype $=0$, set $Z 0=-r: d x$: r;
(1) else set $x=-r: d x: r, y=x ; Z=X+i * Y$;matrix of initial values
- $Z 0=$ vectorize (Z); vector of initial values
(5) until convergence do
- $Z 1=Z 0-f(Z 0) . / d f(Z 0)$;
- difference=abs(Z1-Z0);
- $j 0=$ find $($ difference $<=e p s)$

Vectorized Newton(determines all zeros of a function in $B(0, r)$)

- Algorithm
(1) input $f, d f, r, d x$, zerotype
(2) zerotype $=0$ (real zeros only), zerotype $=1$, all zeros
(3) ifzerotype $=0$, set $Z 0=-r: d x: r$;
(1) else set $x=-r: d x: r, y=x ; Z=X+i * Y$;matrix of initial values
- $Z 0=$ vectorize (Z); vector of initial values
(3) until convergence do
- $Z 1=Z 0-f(Z 0) . / d f(Z 0)$;
- difference=abs(Z1-Z0);
- $j 0=$ find (difference $<=e p s$)
- $j 1=$ find $(($ difference $>e p s) \& a b s(Z 1)<r)$;

Vectorized Newton(determines all zeros of a function in $B(0, r)$)

- Algorithm
(1) input $f, d f, r, d x$, zerotype
(2) zerotype $=0$ (real zeros only), zerotype $=1$, all zeros
(3) ifzerotype $=0$, set $Z 0=-r: d x: r$;
(4) else set $x=-r: d x: r, y=x ; Z=X+i * Y$;matrix of initial values
- $Z 0=$ vectorize (Z); vector of initial values
(5) until convergence do
- $Z 1=Z 0-f(Z 0) . / d f(Z 0)$;
- difference=abs $(Z 1-Z 0)$;
- $j 0=$ find $($ difference $<=e p s)$
- $j 1=$ find $(($ difference $>$ eps $) \& a b s(Z 1)<r)$;
- $Z=[Z ; Z 1(j 0)] ;$ converged components

Vectorized Newton(determines all zeros of a function in $B(0, r)$)

- Algorithm
(1) input $f, d f, r, d x$, zerotype
(2) zerotype $=0$ (real zeros only), zerotype $=1$, all zeros
(3) ifzerotype $=0$, set $Z 0=-r: d x: r$;
(4) else set $x=-r: d x: r, y=x ; Z=X+i * Y$;matrix of initial values
- $Z 0=$ vectorize (Z); vector of initial values
(5) until convergence do
- $Z 1=Z 0-f(Z 0) . / d f(Z 0)$;
- difference=abs $(Z 1-Z 0)$;
- $j 0=$ find $($ difference $<=e p s)$
- $j 1=$ find $(($ difference $>$ eps $) \& a b s(Z 1)<r)$;
- $Z=[Z ; Z 1(j 0)] ;$ converged components
- $Z 0=Z 1(j 1)$; continue with components yet to converge

Vectorized Newton(determines all zeros of a function in B(0,r))

- Algorithm
(1) input $f, d f, r, d x$, zerotype
(2) zerotype $=0$ (real zeros only), zerotype $=1$, all zeros
(3) ifzerotype $=0$, set $Z 0=-r: d x: r$;
(1) else set $x=-r: d x: r, y=x ; Z=X+i * Y$;matrix of initial values
- $Z 0=$ vectorize (Z); vector of initial values
(3) until convergence do
- $Z 1=Z 0-f(Z 0) . / d f(Z 0)$;
- difference=abs(Z1-Z0);
- $j 0=$ find (difference $<=e p s$)
- $j 1=$ find $(($ difference $>e p s) \& a b s(Z 1)<r)$;
- $Z=[Z ; Z 1(j 0)]$; converged components
- $Z 0=Z 1(j 1)$; continue with components yet to converge
(0) return nonrepeating Z values in $B(0, r)$

Vectorized Newton(determines all zeros of a function in $B(0, r)$)

- Algorithm
(1) input $f, d f, r, d x$, zerotype
(2) zerotype $=0$ (real zeros only), zerotype $=1$, all zeros
(3) ifzerotype $=0$, set $Z 0=-r$: $d x$: r;
(9) else set $x=-r: d x: r, y=x ; Z=X+i * Y$;matrix of initial values
- $Z 0=$ vectorize (Z); vector of initial values
(5) until convergence do
- $Z 1=Z 0-f(Z 0) . / d f(Z 0)$;
- difference=abs $(Z 1-Z 0)$;
- $j 0=$ find $($ difference $<=e p s)$
- $j 1=$ find $(($ difference $>$ eps $) \& a b s(Z 1)<r)$;
- $Z=[Z ; Z 1(j 0)] ;$ converged components
- $Z 0=Z 1(j 1)$; continue with components yet to converge
(0) return nonrepeating Z values in $B(0, r)$
- The case of real zeros has been further investigated in Memoglu[MS thesis].
- $f(x)=x^{4}+x^{3}+x^{2}+x+1$
- $f(x)=x^{4}+x^{3}+x^{2}+x+1$
- $d f(x)=4 x^{3}+3 x^{2}+2 x+1$
- $f(x)=x^{4}+x^{3}+x^{2}+x+1$
- $d f(x)=4 x^{3}+3 x^{2}+2 x+1$
>> cvnewton(f,df,2,0.1,1)
ans $=$

$$
\begin{aligned}
& \gg \operatorname{roots}\left(\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 1
\end{array}\right]\right) \\
& \text { ans }=
\end{aligned}
$$

$$
\begin{aligned}
0.3090 & -0.9511 i \\
0.3090 & +0.9511 i \\
-0.8090 & -0.5878 i \\
-0.8090 & +0.5878 i
\end{aligned}
$$

Vectorized Newton:all zeros of a function in $\mathrm{B}(0, \mathrm{r})$

- $f(z)=\sin \left(z^{\wedge} 2+1\right)$

Vectorized Newton:all zeros of a function in $\mathrm{B}(0, \mathrm{r})$

- $f(z)=\sin \left(z^{\wedge} 2+1\right)$
- $r=3$

Vectorized Newton:all zeros of a function in $\mathrm{B}(0, \mathrm{r})$

- $f(z)=\sin \left(z^{\wedge} 2+1\right)$
- $r=3$
z

$$
\begin{array}{r}
\sin \left(z^{2}+1\right) \\
1.0 e-007 \\
0 \tag{0}\\
0 \\
0.0111 \\
0.0111 \\
-0.0233 \\
-0.0233 \\
0.1094 \\
0.1094 \\
0.2583 \\
0.2583 \\
-0.2815 \\
-0.2815 \\
-0.2347 \\
-0.2347
\end{array}
$$

$$
\begin{aligned}
& 0-1.0000 i \\
& 0+1.0000 i \\
& 1.4634 \\
&-1.4634 \\
& 0-2.0351 i \\
& 0+2.0351 i \\
& 2.2985 \\
&-2.2985 \\
& 0-2.6987 i \\
& 0+2.6987 i \\
& 0-2.6987 i \\
& 0+2.6987 i \\
& 2.9025 \\
&-2.9025
\end{aligned}
$$

Vectorized Newton:all zeros of a function in $\mathrm{B}(0, \mathrm{r})$

- $f(z)=\sin \left(e^{z}\right)$

Vectorized Newton:all zeros of a function in $\mathrm{B}(0, \mathrm{r})$

- $f(z)=\sin \left(e^{z}\right)$
- $\mathrm{r}=3.5$

Vectorized Newton:all zeros of a function in $\mathrm{B}(0, \mathrm{r})$

- $f(z)=\sin \left(e^{z}\right)$
- $\mathrm{r}=3.5$ Z

$$
\begin{aligned}
& f(z) \\
& 1.0 \mathrm{e}-003
\end{aligned}
$$

$$
-0.0004
$$

$$
0.0184
$$

$$
0.0205
$$

$$
-0.0534
$$

$$
-0.0346
$$

$$
0.0122
$$

0.0008
-0.0359
0.1262
1.1447 - $3.1416 i$
$0.0004+0.0083 i$
$1.1447+3.1416 i$
0.0004 - 0.0083i
3.4473
-0.1564

Vectorized Newton:all zeros of a function in $\mathrm{B}(0, \mathrm{r})$

- $f(z)=\cos (2 z)$

Vectorized Newton:all zeros of a function in $\mathrm{B}(0, \mathrm{r})$

- $f(z)=\cos (2 z)$
- $\mathrm{r}=4$

Vectorized Newton:all zeros of a function in $\mathrm{B}(0, \mathrm{r})$

- $f(z)=\cos (2 z)$
- $\mathrm{r}=4$
Z

$$
\begin{aligned}
& f(z) \\
& 1.0 \mathrm{e}-005 \text { t }
\end{aligned}
$$

$$
\begin{array}{rr}
-3.9270 & 0.1634 \\
-2.3562 & -0.8980 \\
-0.7854 & -0.3673 \\
0.7854 & -0.3673 \\
2.3562 & -0.8980 \\
3.9270 & 0.1634
\end{array}
$$

Vectorized Newton for nonlinear systems

- First consider the conventional Newton for the nonlinear system

Vectorized Newton for nonlinear systems

- First consider the conventional Newton for the nonlinear system

$$
\begin{aligned}
& f(x, y)=0 \\
& g(x, y)=0
\end{aligned}
$$

Vectorized Newton for nonlinear systems

- First consider the conventional Newton for the nonlinear system

$$
\begin{aligned}
& f(x, y)=0 \\
& g(x, y)=0
\end{aligned}
$$

(1) Choose $X^{(0)}=\left[\begin{array}{l}x_{0} \\ y_{0}\end{array}\right]$,

Vectorized Newton for nonlinear systems

- First consider the conventional Newton for the nonlinear system

$$
\begin{aligned}
& f(x, y)=0 \\
& g(x, y)=0
\end{aligned}
$$

(1) Choose $X^{(0)}=\left[\begin{array}{l}x_{0} \\ y_{0}\end{array}\right]$,
(2) for $i=0$ until convergence do

Vectorized Newton for nonlinear systems

- First consider the conventional Newton for the nonlinear system

$$
\begin{aligned}
& f(x, y)=0 \\
& g(x, y)=0
\end{aligned}
$$

(1) Choose $X^{(0)}=\left[\begin{array}{l}x_{0} \\ y_{0}\end{array}\right]$,
(2) for $i=0$ until convergence do

$$
\text { (1) } J\left(X^{(i)}\right)=\left[\begin{array}{cc}
f_{x} & f_{y} \\
g_{x} & g_{y}
\end{array}\right]_{\left(X^{(i)}\right)}, F\left(X^{(i)}\right)=\left[\begin{array}{c}
f\left(x_{i}, y_{i}\right) \\
g\left(x_{i}, y_{i}\right)
\end{array}\right] \text {, }
$$

Vectorized Newton for nonlinear systems

- First consider the conventional Newton for the nonlinear system

$$
\begin{aligned}
& f(x, y)=0 \\
& g(x, y)=0
\end{aligned}
$$

(1) Choose $X^{(0)}=\left[\begin{array}{l}x_{0} \\ y_{0}\end{array}\right]$,
(2) for $i=0$ until convergence do
(1. $J\left(X^{(i)}\right)=\left[\begin{array}{cc}f_{x} & f_{y} \\ g_{x} & g_{y}\end{array}\right]_{\left(X^{(i)}\right)}, F\left(X^{(i)}\right)=\left[\begin{array}{l}f\left(x_{i}, y_{i}\right) \\ g\left(x_{i}, y_{i}\right)\end{array}\right]$,
(2) Solve $J\left(X^{(i)}\right) \Delta X=-F\left(X^{(i)}\right)$

Vectorized Newton for nonlinear systems

- First consider the conventional Newton for the nonlinear system

$$
\begin{aligned}
& f(x, y)=0 \\
& g(x, y)=0
\end{aligned}
$$

(1) Choose $X^{(0)}=\left[\begin{array}{l}x_{0} \\ y_{0}\end{array}\right]$,
(2) for $i=0$ until convergence do
(1) $J\left(X^{(i)}\right)=\left[\begin{array}{cc}f_{x} & f_{y} \\ g_{x} & g_{y}\end{array}\right]_{\left(X^{(i)}\right)}, F\left(X^{(i)}\right)=\left[\begin{array}{l}f\left(x_{i}, y_{i}\right) \\ g\left(x_{i}, y_{i}\right)\end{array}\right]$,
(2) Solve $J\left(X^{(i)}\right) \Delta X=-F\left(X^{(i)}\right)$
(3) $X^{(i+1)}=X^{(i)}+\Delta X$

Vectorized Newton for nonlinear systems

- First consider the conventional Newton for the nonlinear system

$$
\begin{aligned}
& f(x, y)=0 \\
& g(x, y)=0
\end{aligned}
$$

(1) Choose $X^{(0)}=\left[\begin{array}{l}x_{0} \\ y_{0}\end{array}\right]$,
(2) for $i=0$ until convergence do
(1. $J\left(X^{(i)}\right)=\left[\begin{array}{cc}f_{x} & f_{y} \\ g_{x} & g_{y}\end{array}\right]_{\left(X^{(i)}\right)}, F\left(X^{(i)}\right)=\left[\begin{array}{l}f\left(x_{i}, y_{i}\right) \\ g\left(x_{i}, y_{i}\right)\end{array}\right]$,
(2) Solve $J\left(X^{(i)}\right) \Delta X=-F\left(X^{(i)}\right)$
(3) $X^{(i+1)}=X^{(i)}+\Delta X$

- it works for a "good" choice of $X^{(0)}$

Vectorized Newton for nonlinear systems

- First consider the conventional Newton for the nonlinear system

$$
\begin{aligned}
& f(x, y)=0 \\
& g(x, y)=0
\end{aligned}
$$

(1) Choose $X^{(0)}=\left[\begin{array}{l}x_{0} \\ y_{0}\end{array}\right]$,
(2) for $i=0$ until convergence do
(1) $J\left(X^{(i)}\right)=\left[\begin{array}{cc}f_{x} & f_{y} \\ g_{x} & g_{y}\end{array}\right]_{\left(X^{(i)}\right)}, F\left(X^{(i)}\right)=\left[\begin{array}{l}f\left(x_{i}, y_{i}\right) \\ g\left(x_{i}, y_{i}\right)\end{array}\right]$,
(2) Solve $J\left(X^{(i)}\right) \Delta X=-F\left(X^{(i)}\right)$
(3) $X^{(i+1)}=X^{(i)}+\Delta X$

- it works for a "good" choice of $X^{(0)}$
- provided that $J\left(X^{(i)}\right)$ is nonsingular

Vectorized Newton for nonlinear systems

- First consider the conventional Newton for the nonlinear system

$$
\begin{aligned}
& f(x, y)=0 \\
& g(x, y)=0
\end{aligned}
$$

(1) Choose $X^{(0)}=\left[\begin{array}{l}x_{0} \\ y_{0}\end{array}\right]$,
(2) for $i=0$ until convergence do
(1) $J\left(X^{(i)}\right)=\left[\begin{array}{cc}f_{x} & f_{y} \\ g_{x} & g_{y}\end{array}\right]_{\left(X^{(i)}\right)}, F\left(X^{(i)}\right)=\left[\begin{array}{l}f\left(x_{i}, y_{i}\right) \\ g\left(x_{i}, y_{i}\right)\end{array}\right]$,
(2) Solve $J\left(X^{(i)}\right) \Delta X=-F\left(X^{(i)}\right)$
(3) $X^{(i+1)}=X^{(i)}+\Delta X$

- it works for a "good" choice of $X^{(0)}$
- provided that $J\left(X^{(i)}\right)$ is nonsingular
- determines a single solution

Vectorized Newton for nonlinear systems:all zeros over

$[a, b] \times[c, d]$

- Can we find all zeros(say real, for example) of a nonlinear system in $[a, b] x[c, d]$ simultaneously?

Vectorized Newton for nonlinear systems:all zeros over

$[a, b] \times[c, d]$

- Can we find all zeros(say real, for example) of a nonlinear system in $[a, b] x[c, d]$ simultaneously?

$$
\begin{aligned}
& f(x, y)=0 \\
& g(x, y)=0
\end{aligned}
$$

Vectorized Newton for nonlinear systems:all zeros over

$[a, b] x[c, d]$

- Can we find all zeros(say real, for example) of a nonlinear system in $[a, b] x[c, d]$ simultaneously?

$$
\begin{aligned}
& f(x, y)=0 \\
& g(x, y)=0
\end{aligned}
$$

- it will allow us to determine all stationary points of the system

Vectorized Newton for nonlinear systems:all zeros over

$[a, b] x[c, d]$

- Can we find all zeros(say real, for example) of a nonlinear system in $[a, b] x[c, d]$ simultaneously?

$$
\begin{aligned}
& f(x, y)=0 \\
& g(x, y)=0
\end{aligned}
$$

- it will allow us to determine all stationary points of the system

$$
\begin{aligned}
& d x / d t=f(x, y) \\
& d y / d t=g(x, y)
\end{aligned}
$$

Vectorized Newton for nonlinear systems

- Can we find all zeros(say real, for example) of a nonlinear system simultaneously?

Vectorized Newton for nonlinear systems

- Can we find all zeros(say real, for example) of a nonlinear system simultaneously?

Vectorized Newton for nonlinear systems

- Algorithm

Vectorized Newton for nonlinear systems

- Algorithm
(1) input f,g,df,dg,r,dx

Vectorized Newton for nonlinear systems

- Algorithm
(1) input f,g,df,dg,r,dx
(2) set $Z^{(0)}=\left[\left(x_{0}, y_{0}\right)^{(0)},\left(x_{1}, y_{0}\right)^{(0)}, \ldots,\left(x_{n}, y_{0}\right)^{(0)}, \ldots\right.$, $\left.\left(x_{0}, y_{n}\right)^{(0)},\left(x_{1}, y_{n}\right)^{(0)}, \ldots,\left(x_{n}, y_{n}\right)^{(0)}\right] ;$

Vectorized Newton for nonlinear systems

- Algorithm
(1) input f,g,df,dg,r,dx
(2) set $Z^{(0)}=\left[\left(x_{0}, y_{0}\right)^{(0)},\left(x_{1}, y_{0}\right)^{(0)}, \ldots,\left(x_{n}, y_{0}\right)^{(0)}, \ldots\right.$, $\left.\left(x_{0}, y_{n}\right)^{(0)},\left(x_{1}, y_{n}\right)^{(0)}, \ldots,\left(x_{n}, y_{n}\right)^{(0)}\right] ;$
(3) for $i=0$ until convergence do

Vectorized Newton for nonlinear systems

- Algorithm
(1) input f,g,df,dg,r,dx
(2) set $Z^{(0)}=\left[\left(x_{0}, y_{0}\right)^{(0)},\left(x_{1}, y_{0}\right)^{(0)}, \ldots,\left(x_{n}, y_{0}\right)^{(0)}, \ldots\right.$, $\left.\left(x_{0}, y_{n}\right)^{(0)},\left(x_{1}, y_{n}\right)^{(0)}, \ldots,\left(x_{n}, y_{n}\right)^{(0)}\right]$;
(3) for $i=0$ until convergence do
- set $F=\left[\begin{array}{l}f \\ g\end{array}\right]$, compute $F\left(Z^{(i)}\right)$;

Vectorized Newton for nonlinear systems

- Algorithm
(1) input f,g,df,dg,r,dx
(2) set $Z^{(0)}=\left[\left(x_{0}, y_{0}\right)^{(0)},\left(x_{1}, y_{0}\right)^{(0)}, \ldots,\left(x_{n}, y_{0}\right)^{(0)}, \ldots\right.$,

$$
\left.\left(x_{0}, y_{n}\right)^{(0)},\left(x_{1}, y_{n}\right)^{(0)}, \ldots,\left(x_{n}, y_{n}\right)^{(0)}\right]
$$

(3) for $i=0$ until convergence do

- set $F=\left[\begin{array}{c}f \\ g\end{array}\right]$, compute $F\left(Z^{(i)}\right)$;
- Form the block diagonal Jacobian

$$
J\left(Z^{(i)}\right)=\left[\begin{array}{cccc}
j\left(x_{0}, y_{0}\right)^{(i)} & 0 & \cdots & 0 \\
0 & j\left(x_{1}, y_{0}\right)^{(i)} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & & j\left(x_{n}, y_{n}\right)^{(i)}
\end{array}\right]
$$

with nonsingular j 's, where each j is of size 2×2.

Vectorized Newton for nonlinear systems

- Algorithm
(1) input f,g,df,dg,r,dx
(2) set $Z^{(0)}=\left[\left(x_{0}, y_{0}\right)^{(0)},\left(x_{1}, y_{0}\right)^{(0)}, \ldots,\left(x_{n}, y_{0}\right)^{(0)}, \ldots\right.$,

$$
\left.\left(x_{0}, y_{n}\right)^{(0)},\left(x_{1}, y_{n}\right)^{(0)}, \ldots,\left(x_{n}, y_{n}\right)^{(0)}\right] ;
$$

(3) for $i=0$ until convergence do

- set $F=\left[\begin{array}{c}f \\ g\end{array}\right]$, compute $F\left(Z^{(i)}\right)$;
- Form the block diagonal Jacobian

$$
J\left(Z^{(i)}\right)=\left[\begin{array}{cccc}
j\left(x_{0}, y_{0}\right)^{(i)} & 0 & \cdots & 0 \\
0 & j\left(x_{1}, y_{0}\right)^{(i)} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & & j\left(x_{n}, y_{n}\right)^{(i)}
\end{array}\right]
$$

with nonsingular j 's, where each j is of size 2×2.

- Solve $J\left(Z^{(i)}\right) \Delta Z=-F\left(Z^{(i)}\right)$

Vectorized Newton for nonlinear systems

- Algorithm
(1) input f,g,df,dg,r,dx
(2) set $Z^{(0)}=\left[\left(x_{0}, y_{0}\right)^{(0)},\left(x_{1}, y_{0}\right)^{(0)}, \ldots,\left(x_{n}, y_{0}\right)^{(0)}, \ldots\right.$,

$$
\left.\left(x_{0}, y_{n}\right)^{(0)},\left(x_{1}, y_{n}\right)^{(0)}, \ldots,\left(x_{n}, y_{n}\right)^{(0)}\right] ;
$$

(3) for $i=0$ until convergence do

- set $F=\left[\begin{array}{c}f \\ g\end{array}\right]$, compute $F\left(Z^{(i)}\right)$;
- Form the block diagonal Jacobian

$$
J\left(Z^{(i)}\right)=\left[\begin{array}{cccc}
j\left(x_{0}, y_{0}\right)^{(i)} & 0 & \cdots & 0 \\
0 & j\left(x_{1}, y_{0}\right)^{(i)} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & & j\left(x_{n}, y_{n}\right)^{(i)}
\end{array}\right]
$$

with nonsingular j 's, where each j is of size 2×2.

- Solve $J\left(Z^{(i)}\right) \Delta Z=-F\left(Z^{(i)}\right)$
- $Z^{(i+1)}=Z^{(i)}+\Delta Z$

Vectorized Newton for nonlinear systems

- Algorithm
(1) input $f, g, d f, d g, r, d x$
(2) set $Z^{(0)}=\left[\left(x_{0}, y_{0}\right)^{(0)},\left(x_{1}, y_{0}\right)^{(0)}, \ldots,\left(x_{n}, y_{0}\right)^{(0)}, \ldots\right.$,

$$
\left.\left(x_{0}, y_{n}\right)^{(0)},\left(x_{1}, y_{n}\right)^{(0)}, \ldots,\left(x_{n}, y_{n}\right)^{(0)}\right]
$$

(3) for $i=0$ until convergence do

- set $F=\left[\begin{array}{l}f \\ g\end{array}\right]$, compute $F\left(Z^{(i)}\right)$;
- Form the block diagonal Jacobian

$$
J\left(Z^{(i)}\right)=\left[\begin{array}{cccc}
j\left(x_{0}, y_{0}\right)^{(i)} & 0 & \cdots & 0 \\
0 & j\left(x_{1}, y_{0}\right)^{(i)} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & & j\left(x_{n}, y_{n}\right)^{(i)}
\end{array}\right]
$$

with nonsingular j 's, where each j is of size 2×2.

- Solve $J\left(Z^{(i)}\right) \Delta Z=-F\left(Z^{(i)}\right)$
- $Z^{(i+1)}=Z^{(i)}+\Delta Z$
- Accumulate converged components and continue with the ones yet to converge

Vectorized Newton for nonlinear systems

- Algorithm
(1) input $\mathrm{f}, \mathrm{g}, \mathrm{df}, \mathrm{dg}, \mathrm{r}, \mathrm{dx}$
(2) set $Z^{(0)}=\left[\left(x_{0}, y_{0}\right)^{(0)},\left(x_{1}, y_{0}\right)^{(0)}, \ldots,\left(x_{n}, y_{0}\right)^{(0)}, \ldots\right.$,

$$
\left.\left(x_{0}, y_{n}\right)^{(0)},\left(x_{1}, y_{n}\right)^{(0)}, \ldots,\left(x_{n}, y_{n}\right)^{(0)}\right] ;
$$

(3) for $i=0$ until convergence do

- set $F=\left[\begin{array}{c}f \\ g\end{array}\right]$, compute $F\left(Z^{(i)}\right)$;
- Form the block diagonal Jacobian

$$
J\left(Z^{(i)}\right)=\left[\begin{array}{cccc}
j\left(x_{0}, y_{0}\right)^{(i)} & 0 & \cdots & 0 \\
0 & j\left(x_{1}, y_{0}\right)^{(i)} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & & j\left(x_{n}, y_{n}\right)^{(i)}
\end{array}\right]
$$

with nonsingular j 's, where each j is of size 2×2.

- Solve $J\left(Z^{(i)}\right) \Delta Z=-F\left(Z^{(i)}\right)$
- $Z^{(i+1)}=Z^{(i)}+\Delta Z$
- Accumulate converged components and continue with the ones yet to converge
(9) return nonrepeating elements of $Z^{(i+1)}$ in matrix form

Vectorized Newton for nonlinear systems

- Examples: Determine stationary points of the autonomous system

Vectorized Newton for nonlinear systems

- Examples: Determine stationary points of the autonomous system
- $d x / d t=x^{2}+y^{2}-1, d y / d t=-x^{2}+y$

Vectorized Newton for nonlinear systems

- Examples: Determine stationary points of the autonomous system
- $d x / d t=x^{2}+y^{2}-1, d y / d t=-x^{2}+y$

$$
W=
$$

$$
\begin{array}{rlrl}
& 1 & W= & \\
-1 & 2 & & \\
-1 & 1 & -1.0000 & 1.0000 \\
0 & 2 & -0.8333 & 0.6667 \\
0 & 1 & 0.8333 & 0.6667 \\
1 & 2 & 1.0000 & 1.0000 \\
1 & & & \\
i=0 & & & i=1
\end{array}
$$

Vectorized Newton for nonlinear systems

- Examples: Determine stationary points of the autonomous system

Vectorized Newton for nonlinear systems

- Examples: Determine stationary points of the autonomous system
- $d x / d t=x^{2}+y^{2}-1, d y / d t=-x^{2}+y$

Vectorized Newton for nonlinear systems

- Examples: Determine stationary points of the autonomous system
- $d x / d t=x^{2}+y^{2}-1, d y / d t=-x^{2}+y$

$$
W=
$$

$$
\begin{array}{rrr}
-0.8333 & 0.6667 & W= \\
-0.7881 & 0.6190 & \\
0.7881 & 0.6190 & \\
0.8333 & 0.6667 & \\
i=3 & & i=5
\end{array}
$$

Vectorized Newton for nonlinear systems

- Examples: Determine stationary points of the autonomous system
- $d x / d t=x^{2}+y^{2}-1, d y / d t=-x^{2}+y$
而 =

$$
\begin{array}{rrr}
-0.8333 & 0.6667 & w= \\
-0.7881 & 0.6190 & \\
0.7881 & 0.6190 & \\
0.8333 & 0.6667 & \\
i=3 & & i=5
\end{array}
$$

- Needs to be optimized

Vectorized Newton for nonlinear systems

- Examples: Determine stationary points of the autonomous system

Vectorized Newton for nonlinear systems

- Examples: Determine stationary points of the autonomous system
- $d x / d t=x^{2}+y^{2}-1, d y / d t=-x^{2}-1+y$

Vectorized Newton for nonlinear systems

- Examples: Determine stationary points of the autonomous system
- $d x / d t=x^{2}+y^{2}-1, d y / d t=-x^{2}-1+y$

$$
W=
$$

$$
\mathrm{w}=
$$

-1	0
-1	1
1	0
1	1

-0.6000	1.2000
-0.2500	1.0000
0.2500	1.0000
0.6000	1.2000

$$
w=
$$

$$
\begin{array}{rrrl}
-0.0001 & 1.0000 & \text { ans }= & \\
\\
0 & 1.0000 & & \\
0.0001 & 1.0000 & 0 & 1 \quad i=14
\end{array}
$$

Vectorized Newton for nonlinear systems

- Examples: Determine stationary points of the autonomous system

Vectorized Newton for nonlinear systems

- Examples: Determine stationary points of the autonomous system
- $d x / d t=x^{2} / 9+y^{2} / 4-1, d y / d t=x^{2} / 4+y^{2} / 9-1$.

Vectorized Newton for nonlinear systems

- Examples: Determine stationary points of the autonomous system
- $d x / d t=x^{2} / 9+y^{2} / 4-1, d y / d t=x^{2} / 4+y^{2} / 9-1$.
>> vnewtons (3)

$$
W=
$$

W =

-3	-3
-3	3
3	-3
3	3

$$
\begin{array}{rr}
-1.9615 & -1.9615 \\
-1.9615 & 1.9615 \\
1.9615 & -1.9615 \\
1.9615 & 1.9615
\end{array}
$$

- $\quad i=0$

$$
i=1
$$

$$
w=
$$

ans =

$$
\begin{array}{rr}
-1.6867 & -1.6867 \\
-1.6867 & 1.6867 \\
1.6867 & -1.6867 \\
1.6867 & 1.6867
\end{array}
$$

$$
\begin{array}{rr}
-1.6641 & -1.6641 \\
-1.6641 & 1.6641 \\
1.6641 & -1.6641 \\
1.6641 & 1.6641
\end{array}
$$

$$
i=2
$$

$i=5$

Further work

- Optimize the proposed vectorized Newton for nonlinear systems

Further work

- Optimize the proposed vectorized Newton for nonlinear systems
- Solve $y^{\prime}=F(t, y)$ implicitly over a domain with arbitrary set initial values, using vectorized Newton just proposed

Vectorized Newton for nonlinear systems

Atkinson, K., An introduction to Numerical Analysis, John Wiley \& Sons, 1989.

Davis, P., Rabinowitz, P, Methods of Numerical Integration, Academic Press, 1984.

雷 Memoglu, M. Some Vector based zero and extremum finders, M.S. Thesis, KTU, 2012.

Duchateau,P. \& Zachmann, D., Applied PDE, Dover Pub., 1989.
目 Coskun, E., Numerical Analysis with Vector Algorithms(textbook under preparation).

Thanks

For your attention My students and family

