Numerical Analysis

Prof. Dr. Erhan Coșkun

Karadeniz Technical University, Faculty of Science,
Department of Mathematics E-posta:erhan@ktu.edu.tr

October, 2020

Mathematical Analysis

- Analytical

Mathematical Analysis

- Analytical
- Numerical

Mathematical Analysis

- Analytical
- Numerical
- Qualitative

Mathematical Analysis

- Analytical
- Numerical
- Qualitative
- Symbolic

Analytical analysis

- Let's consider the following problems:

Analytical analysis

- Let's consider the following problems:
- Solution of algebraic equation $x^{2}-3 x+2=0$?

Analytical analysis

- Let's consider the following problems:
- Solution of algebraic equation $x^{2}-3 x+2=0$?
- Solution of linear system of equations

$$
\begin{aligned}
& a_{11} x+a_{12} y=b_{1} \\
& a_{21} x+a_{22} y=b_{2}
\end{aligned}
$$

Analytical analysis

- Let's consider the following problems:
- Solution of algebraic equation $x^{2}-3 x+2=0$?
- Solution of linear system of equations

$$
\begin{aligned}
& a_{11} x+a_{12} y=b_{1} \\
& a_{21} x+a_{22} y=b_{2}
\end{aligned}
$$

- Value of the integral $\int_{0}^{1} \sin (x) d x$?

Analytical analysis

- Let's consider the following problems:
- Solution of algebraic equation $x^{2}-3 x+2=0$?
- Solution of linear system of equations

$$
\begin{aligned}
& a_{11} x+a_{12} y=b_{1} \\
& a_{21} x+a_{22} y=b_{2}
\end{aligned}
$$

- Value of the integral $\int_{0}^{1} \sin (x) d x$?
- Determining the line through the points $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right)$?

Analytical analysis

- Let's consider the following problems:
- Solution of algebraic equation $x^{2}-3 x+2=0$?
- Solution of linear system of equations

$$
\begin{aligned}
& a_{11} x+a_{12} y=b_{1} \\
& a_{21} x+a_{22} y=b_{2}
\end{aligned}
$$

- Value of the integral $\int_{0}^{1} \sin (x) d x$?
- Determining the line through the points $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right)$?
- Solution of initial value problem defined by

$$
y^{\prime}=t-y, t \in(a, b), y(a)=y_{0} ?
$$

Numerical Analysis

- Solution of algebraic equation

$$
a_{5} x^{5}+a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}=0
$$

(No formula involving radicals can be given to determine solutions for a general algebraic equation of degree greater than or equal to five (Niels Henrik Abel(1802-1829), Generalization: Évariste Galois(1811-1832)).

Numerical Analysis

- Solution of algebraic equation

$$
a_{5} x^{5}+a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}=0
$$

(No formula involving radicals can be given to determine solutions for a general algebraic equation of degree greater than or equal to five (Niels Henrik Abel(1802-1829), Generalization: Évariste Galois(1811-1832)).

- Solution of linear algebraic system defined by $A X=b$, or in general

Numerical Analysis

- Solution of algebraic equation

$$
a_{5} x^{5}+a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}=0
$$

(No formula involving radicals can be given to determine solutions for a general algebraic equation of degree greater than or equal to five (Niels Henrik Abel(1802-1829), Generalization: Évariste Galois(1811-1832)).

- Solution of linear algebraic system defined by $A X=b$, or in general
- Solution of nonlinear algebraic system $F(X)=0$?

Numerical Analysis

- Solution of algebraic equation

$$
a_{5} x^{5}+a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}=0
$$

(No formula involving radicals can be given to determine solutions for a general algebraic equation of degree greater than or equal to five (Niels Henrik Abel(1802-1829), Generalization: Évariste Galois(1811-1832)).

- Solution of linear algebraic system defined by $A X=b$, or in general
- Solution of nonlinear algebraic system $F(X)=0$?
- Value of the integral $\int_{0}^{1} \sin \left(x^{2}\right) d x$?

Numerical Analysis

- Solution of algebraic equation

$$
a_{5} x^{5}+a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}=0
$$

(No formula involving radicals can be given to determine solutions for a general algebraic equation of degree greater than or equal to five (Niels Henrik Abel(1802-1829), Generalization: Évariste Galois(1811-1832)).

- Solution of linear algebraic system defined by $A X=b$, or in general
- Solution of nonlinear algebraic system $F(X)=0$?
- Value of the integral $\int_{0}^{1} \sin \left(x^{2}\right) d x$?
- Determining the polynomial of the lowest degree through the points $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$?

Numerical Analysis

- Solution of algebraic equation

$$
a_{5} x^{5}+a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}=0
$$

(No formula involving radicals can be given to determine solutions for a general algebraic equation of degree greater than or equal to five (Niels Henrik Abel(1802-1829), Generalization: Évariste Galois(1811-1832)).

- Solution of linear algebraic system defined by $A X=b$, or in general
- Solution of nonlinear algebraic system $F(X)=0$?
- Value of the integral $\int_{0}^{1} \sin \left(x^{2}\right) d x$?
- Determining the polynomial of the lowest degree through the points $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$?
- Solution of initial value problem defined by

$$
\begin{aligned}
y \prime & =t-y^{2}, t \in(a, b) \\
y(a) & =y_{0}
\end{aligned}
$$

Qualitative analysis

- Learning about the qualitative behaviour of solution without solving the equation itself. Consider for example,

$$
\begin{aligned}
y^{\prime} & =y(1-y) \\
y(0) & =y_{0}
\end{aligned}
$$

If $y_{0}>1$ then RHS is negative so $y \prime<0$. Thus, solution curves, having netative slopes, will tend to the asymptote $y=1$, as $t \rightarrow \infty$

Qualitative analysis

- Learning about the qualitative behaviour of solution without solving the equation itself. Consider for example,

$$
\begin{aligned}
y^{\prime} & =y(1-y) \\
y(0) & =y_{0}
\end{aligned}
$$

If $y_{0}>1$ then RHS is negative so $y^{\prime}<0$. Thus, solution curves, having netative slopes, will tend to the asymptote $y=1$, as $t \rightarrow \infty$

- For if $0<y_{0}<1$ then RHS is positive, thus $y^{\prime}>0$ so solution curves, having positive slopes, will tend to the asymptote $y=1$ as $t \rightarrow \infty$

Qualitative analysis

- Learning about the qualitative behaviour of solution without solving the equation itself. Consider for example,

$$
\begin{aligned}
y^{\prime} & =y(1-y) \\
y(0) & =y_{0}
\end{aligned}
$$

If $y_{0}>1$ then RHS is negative so $y^{\prime}<0$. Thus, solution curves, having netative slopes, will tend to the asymptote $y=1$, as $t \rightarrow \infty$

- For if $0<y_{0}<1$ then RHS is positive, thus $y^{\prime}>0$ so solution curves, having positive slopes, will tend to the asymptote $y=1$ as $t \rightarrow \infty$
- On the other hand if $y_{0}<0$ then RHS is negative so it is clear even without having explicit solution that the solution curves will decrease.

Qualitative analysis

- plotdf function of Maxima verifies our predictions of solution curves.

Symbolic analysis

- Symbolic analysis is another method of analysis that uses computer algebra systems for problems having analytical solutions.

Symbolic analysis

- Symbolic analysis is another method of analysis that uses computer algebra systems for problems having analytical solutions.
- Let's consider the following initial value problem and see how its analytical solution is obtained by Maxima.

Symbolic analysis

$$
\begin{aligned}
y^{\prime \prime}+y^{\prime} & =x \\
y(0) & =0, y^{\prime}(0)=0
\end{aligned}
$$

Symbolic analysis

$$
\begin{aligned}
y^{\prime \prime}+y^{\prime} & =x \\
y(0) & =0, y^{\prime}(0)=0
\end{aligned}
$$

(\%i2) denk: ${ }^{\top} \operatorname{diff}(y, x, 2)+^{\top} \operatorname{diff}(y, x)=x$;
(\%०2) $\frac{d^{2}}{d x^{2}} y+\frac{d}{d x} y=x$
(\%i3) ode2(denk,y,x) ;
(\%०3) $y=8,8,2 \% e^{-x}+\frac{x^{2}-2 x+2}{2}+$ 옹 $k 1$
(\%i4) ic2 (\%, $\left.x=0, y=0,{ }^{\top} \operatorname{diff}(y, x)=0\right) ;$
(\%04) $y=\frac{x^{2}-2 x+2}{2}-\% e^{-x}$

Stages of Numerical Analysis of a problem

(1) begins with a properly formulated mathematical problem,

Stages of Numerical Analysis of a problem

(1) begins with a properly formulated mathematical problem,
(2) numerical method of solution,

Stages of Numerical Analysis of a problem

(1) begins with a properly formulated mathematical problem,
(2) numerical method of solution,
(3) algorithm to implement the numerical method in an electronic platform,

Stages of Numerical Analysis of a problem

(1) begins with a properly formulated mathematical problem,
(2) numerical method of solution,
(3) algorithm to implement the numerical method in an electronic platform,
(9) code of algorithm with an apropriate programming language,

Stages of Numerical Analysis of a problem

(1) begins with a properly formulated mathematical problem,
(2) numerical method of solution,
(3) algorithm to implement the numerical method in an electronic platform,
(9) code of algorithm with an apropriate programming language,
(3) testing of code,

Stages of Numerical Analysis of a problem

(1) begins with a properly formulated mathematical problem,
(2) numerical method of solution,
(3) algorithm to implement the numerical method in an electronic platform,
(9) code of algorithm with an apropriate programming language,
(5) testing of code,
(0) results, interpretations, critics of numerical method and search for alternatives

Stages of numerical analysis(Example-I:Determining interval containing a zero of function)

- Problem:Determine an interval $[a, b]$ containing zero of a function, if exists, near a given point x_{0}.

Stages of numerical analysis(Example-l:Determining interval containing a zero of function)

- Problem: Determine an interval $[a, b]$ containing zero of a function, if exists, near a given point x_{0}.
- Numerical method(search along right or left directions): begin with interval $[x \min , x \max]:=\left[x_{0}-R, x_{0}+R\right], R>0$ sabit, and call it as a zero search interval. Starting with $x=x_{0}$, search towards right at the points

$$
x, x+h, x+2 h, \ldots
$$

until capturing the first interval $(x, x+h)$ for which

$$
f(x) f(x+h)<=0
$$

In this case the required interval is $X=[x, x+h]$.

Stages of numerical analysis(Example-I:Determining interval containing a zero of function)

- In case a required interval could not be found through searching along the direction towards the right, start with $x=x_{0}$ and search through the points,

$$
x, x-h, x-2 h, \ldots
$$

till the inequality

$$
f(x-h) f(x)<=0
$$

holds. In this case the required interval is $X=[x-h, x]$.

Stages of numerical analysis(Example-I:Determining interval containing a zero of function)

- In case a required interval could not be found through searching along the direction towards the right, start with $x=x_{0}$ and search through the points,

$$
x, x-h, x-2 h, \ldots
$$

till the inequality

$$
f(x-h) f(x)<=0
$$

holds. In this case the required interval is $X=[x-h, x]$.

- If left or right direction search does not result in a proper interval, then no zero is found in the search interval [$x \mathrm{~min}, x \max$].

Example-I:Algorithm

- Algorithm is an ordered set of instructions to implement the associated numerical method. Basically it consists of the steps of

Example-I:Algorithm

- Algorithm is an ordered set of instructions to implement the associated numerical method. Basically it consists of the steps of
- receiving relevant data from user, called input

Example-I:Algorithm

- Algorithm is an ordered set of instructions to implement the associated numerical method. Basically it consists of the steps of
- receiving relevant data from user, called input
- ordered set of instructions to implement the associated numerical method

Example-I:Algorithm

- Algorithm is an ordered set of instructions to implement the associated numerical method. Basically it consists of the steps of
- receiving relevant data from user, called input
- ordered set of instructions to implement the associated numerical method
- returning relevant data to user, called output

Example-I:Algorithm

(1) Input : f, x_{0}

Example-I:Algorithm

(1) Input : f, x_{0}
(2) Default parameter:set $R=10$ (half of search interval length)

Example-I:Algorithm

(1) Input : f, x_{0}
(2) Default parameter:set $R=10$ (half of search interval length)
(3) define $x \min =x_{0}-R, x \max =x_{0}+R$, define $[x \min , x \max]$ as zero search interval

Example-I:Algorithm

(1) Input : f, x_{0}
(2) Default parameter:set $R=10$ (half of search interval length)
(3) define $x \min =x_{0}-R, x \max =x_{0}+R$, define $[x \min , x \max]$ as zero search interval
(9) set $h=0.1$ (search step length), that is the distance between the consequitive points with, $x=x_{0}$ being the initial guess

Example-I:Algorithm

(1) Input : f, x_{0}
(2) Default parameter:set $R=10$ (half of search interval length)
(3) define $x \min =x_{0}-R, x \max =x_{0}+R$, define $[x \min , x \max]$ as zero search interval
(9) set $h=0.1$ (search step length), that is the distance between the consequitive points with, $x=x_{0}$ being the initial guess
(5) while $x<x \max$ (search along the right direction)

Example-I:Algorithm

(1) Input : f, x_{0}
(2) Default parameter:set $R=10$ (half of search interval length)
(3) define $x \min =x_{0}-R, x \max =x_{0}+R$, define $[x \min , x \max]$ as zero search interval
(9) set $h=0.1$ (search step length), that is the distance between the consequitive points with, $x=x_{0}$ being the initial guess
(5) while $x<x \max$ (search along the right direction)

- if $f(x) f(x+h) \leq 0$ then set $X=[x, x+h]$ and return,

Example-I:Algorithm

(1) Input : f, x_{0}
(2) Default parameter:set $R=10$ (half of search interval length)
(3) define $x \min =x_{0}-R, x \max =x_{0}+R$, define $[x \min , x \max]$ as zero search interval
(9) set $h=0.1$ (search step length), that is the distance between the consequitive points with, $x=x_{0}$ being the initial guess
(6) while $x<x \max$ (search along the right direction)

- if $f(x) f(x+h) \leq 0$ then set $X=[x, x+h]$ and return,
- else set $x=x+h$ and goto step 5

Example-I:Algorithm

(1) Input : f, x_{0}
(2) Default parameter:set $R=10$ (half of search interval length)
(3) define $x \min =x_{0}-R, x \max =x_{0}+R$, define $[x \min , x \max]$ as zero search interval
(9) set $h=0.1$ (search step length), that is the distance between the consequitive points with, $x=x_{0}$ being the initial guess
(5) while $x<x \max$ (search along the right direction)

- if $f(x) f(x+h) \leq 0$ then set $X=[x, x+h]$ and return,
- else set $x=x+h$ and goto step 5
(0) while $x>x$ min (search along the left direction)

Example-I:Algorithm

(1) Input : f, x_{0}
(2) Default parameter:set $R=10$ (half of search interval length)
(3) define $x \min =x_{0}-R, x \max =x_{0}+R$, define $[x \min , x \max]$ as zero search interval
(9) set $h=0.1$ (search step length), that is the distance between the consequitive points with, $x=x_{0}$ being the initial guess
(0) while $x<x \max$ (search along the right direction)

- if $f(x) f(x+h) \leq 0$ then set $X=[x, x+h]$ and return,
- else set $x=x+h$ and goto step 5
(0) while $x>x$ min (search along the left direction)
- if $f(x-h) f(x) \leq 0$ then set $X=[x-h, x]$ and return,

Example-l:Algorithm

(1) Input : f, x_{0}
(2) Default parameter:set $R=10$ (half of search interval length)
(3) define $x \min =x_{0}-R, x \max =x_{0}+R$, define $[x \min , x \max]$ as zero search interval
(9) set $h=0.1$ (search step length), that is the distance between the consequitive points with, $x=x_{0}$ being the initial guess
(5) while $x<x \max$ (search along the right direction)

- if $f(x) f(x+h) \leq 0$ then set $X=[x, x+h]$ and return,
- else set $x=x+h$ and goto step 5
(0) while $x>x$ min (search along the left direction)
- if $f(x-h) f(x) \leq 0$ then set $X=[x-h, x]$ and return,
- else set $x=x-h$ and goto step 6

Example-l:Algorithm

(1) Input : f, x_{0}
(2) Default parameter:set $R=10$ (half of search interval length)
(3) define $x \min =x_{0}-R, x \max =x_{0}+R$, define $[x \min , x \max]$ as zero search interval
(9) set $h=0.1$ (search step length), that is the distance between the consequitive points with, $x=x_{0}$ being the initial guess
(5) while $x<x \max$ (search along the right direction)

- if $f(x) f(x+h) \leq 0$ then set $X=[x, x+h]$ and return,
- else set $x=x+h$ and goto step 5
(0) while $x>x$ min (search along the left direction)
- if $f(x-h) f(x) \leq 0$ then set $X=[x-h, x]$ and return,
- else set $x=x-h$ and goto step 6
(1) display "no interval has been determined " set $X=[]$ and return.

Example-l:Algorithm

(1) Input : f, x_{0}
(2) Default parameter:set $R=10$ (half of search interval length)
(3) define $x \min =x_{0}-R, x \max =x_{0}+R$, define $[x \min , x \max]$ as zero search interval
(9) set $h=0.1$ (search step length), that is the distance between the consequitive points with, $x=x_{0}$ being the initial guess
(5) while $x<x \max$ (search along the right direction)

- if $f(x) f(x+h) \leq 0$ then set $X=[x, x+h]$ and return,
- else set $x=x+h$ and goto step 5
(0) while $x>x$ min (search along the left direction)
- if $f(x-h) f(x) \leq 0$ then set $X=[x-h, x]$ and return,
- else set $x=x-h$ and goto step 6
(3) display "no interval has been determined " set $X=[]$ and return.
(8) Output: X

Example-I:Program(or Code)

- function $X=b u l(f, x 0)$

Example-I:Program(or Code)

- function $X=b u l(f, x 0)$
- $x=x 0 ; R=10$;

Example-I:Program(or Code)

- function $X=b u l(f, x 0)$
- $\quad x=x 0 ; R=10$;
- $\quad x \min =x 0-R ; x \max =x 0+R ; h=0.1$;

Example-I:Program(or Code)

- function $\mathrm{X}=\mathrm{bul}(\mathrm{f}, \mathrm{x} 0)$
- $x=x 0 ; R=10$;
- $\quad x \min =x 0-R ; x \max =x 0+R ; h=0.1$;
- while $x<x$ max

Example-I:Program(or Code)

- function $X=b u l(f, x 0)$
- $x=x 0 ; R=10$;
- $\quad x \min =x 0-R ; x \max =x 0+R ; h=0.1$;
- while $x<x \max$
- if $f(x) * f(x+h)<=0 X=[x, x+h]$; return;

Example-I:Program(or Code)

- function $X=b u l(f, x 0)$
- $x=x 0 ; R=10$;
- $\quad x \min =x 0-R ; x \max =x 0+R ; h=0.1$;
- while $x<x \max$
- if $f(x) * f(x+h)<=0 X=[x, x+h]$; return; else

Example-I:Program(or Code)

- function $X=b u l(f, x 0)$
- $x=x 0 ; R=10$;
- $\quad x \min =x 0-R ; x \max =x 0+R ; h=0.1$;
- while $x<x \max$
- if $f(x) * f(x+h)<=0 X=[x, x+h]$; return;
- else
- $x=x+h$; end

Example-I:Program(or Code)

- function $X=b u l(f, x 0)$
- $x=x 0 ; R=10$;
- $\quad x \min =x 0-R ; x \max =x 0+R ; h=0.1$;
- while $x<x \max$
- if $f(x) * f(x+h)<=0 X=[x, x+h]$; return;
- else
- $x=x+h$; end
- end

Example-I:Program(or Code)

- function $X=b u l(f, x 0)$
- $x=x 0 ; R=10$;
- $\quad x \min =x 0-R ; x \max =x 0+R ; h=0.1$;
- while $x<x \max$
- if $f(x) * f(x+h)<=0 X=[x, x+h]$; return;
- else
- $x=x+h$; end
- end
- $x=x 0$;

Example-I:Program(or Code)

- function $X=b u l(f, x 0)$
- $x=x 0 ; R=10$;
- $\quad x \min =x 0-R ; x \max =x 0+R ; h=0.1$;
- while $x<x \max$
- if $f(x) * f(x+h)<=0 X=[x, x+h]$; return;
- else
- $x=x+h$; end
- end
- $x=x 0$;
- while $x>x$ min

Example-I:Program(or Code)

- function $X=b u l(f, x 0)$
- $x=x 0 ; R=10$;
- $\quad x \min =x 0-R ; x \max =x 0+R ; h=0.1$;
- while $x<x \max$
- if $f(x) * f(x+h)<=0 X=[x, x+h]$; return;
- else
- $x=x+h$; end
- end
- $x=x 0$;
- while $x>x$ min
- if $f(x-h) * f(x)<=0 \quad X=[x-h, x]$; return;

Example-I:Program(or Code)

- function $X=b u l(f, x 0)$
- $x=x 0 ; R=10$;
- $\quad x \min =x 0-R ; x \max =x 0+R ; h=0.1$;
- while $x<x \max$
- if $f(x) * f(x+h)<=0 X=[x, x+h]$; return;
- else
- $x=x+h$; end
- end
- $x=x 0$;
- while $x>x$ min
- if $f(x-h) * f(x)<=0 \quad X=[x-h, x]$; return;
- else

Example-I:Program(or Code)

- function $X=b u l(f, x 0)$
- $x=x 0 ; R=10$;
- $\quad x \min =x 0-R ; x \max =x 0+R ; h=0.1$;
- while $x<x \max$
- if $f(x) * f(x+h)<=0 X=[x, x+h]$; return;
- else
- $x=x+h$; end
- end
- $x=x 0$;
- while $x>x$ min
- if $f(x-h) * f(x)<=0 \quad X=[x-h, x]$; return;
- else
- $x=x-h$; end

Example-I:Program(or Code)

- function $X=b u l(f, x 0)$
- $x=x 0 ; R=10$;
- $\quad x \min =x 0-R ; x \max =x 0+R ; h=0.1$;
- while $x<x \max$
- if $f(x) * f(x+h)<=0 X=[x, x+h]$; return;
- else
- $x=x+h$; end
- end
- $x=x 0$;
- while $x>x$ min
- if $f(x-h) * f(x)<=0 \quad X=[x-h, x]$; return;
- else
- $\quad x=x-h$; end
- end

Example-I:Program(or Code)

- function $X=b u l(f, x 0)$
- $x=x 0 ; R=10$;
- $\quad x \min =x 0-R ; x \max =x 0+R ; h=0.1$;
- while $x<x \max$
- if $f(x) * f(x+h)<=0 X=[x, x+h]$; return;
- else
- $\quad x=x+h$; end
- end
- $x=x 0$;
- while $x>x \min$
- if $f(x-h) * f(x)<=0 \quad X=[x-h, x]$; return;
- else
- $x=x-h$; end
- end
- $\operatorname{disp}($ 'no interval has been determined') $; X=[]$;

Example-I:Test and implementation

- Determine an interval $[a, b]$ of length $h=0.1$ that contains a zero of $f(x)=\exp (x)-x-4$ near $x_{0}=0$

Example-I:Test and implementation

- Determine an interval $[a, b]$ of length $h=0.1$ that contains a zero of $f(x)=\exp (x)-x-4$ near $x_{0}=0$
- $\gg \mathrm{f}=@(\mathrm{x}) \exp (\mathrm{x})-\mathrm{x}-4$
$\gg X=b u l(f, 0)$
$X=1.70001 .8000$

Example-ITest

- Determine an interval $[a, b]$ of length $h=0.1$ that contains a zero of $f(x)=\log (x)-x+4$ near $x_{0}=10$

Example-ITest

- Determine an interval $[a, b]$ of length $h=0.1$ that contains a zero of $f(x)=\log (x)-x+4$ near $x_{0}=10$
- $\gg \mathrm{f}=@(\mathrm{x}) \log (\mathrm{x})-\mathrm{x}+4$
$\gg X=$ bul $(f, 10)$
$X=5.70005 .8000$

Example-I: Restrictions and alternatives

- Intervals around discontinuity where the function changes sign may mistakenly be considered as an interval containing zero

Example-I: Restrictions and alternatives

- Intervals around discontinuity where the function changes sign may mistakenly be considered as an interval containing zero
- For example, when applied to $f(x)=1 / x$ near zero, the method may result in an interval around zero as the containing the zero, which obviously is wrong..

Example-I: Restrictions and alternatives

- Intervals around discontinuity where the function changes sign may mistakenly be considered as an interval containing zero
- For example, when applied to $f(x)=1 / x$ near zero, the method may result in an interval around zero as the containing the zero, which obviously is wrong..
- Since the method is based on the Intermedate Value Theorem, it can only be applied function that are continuous on an interval around the searched zero.

Example-I: Restrictions and alternatives

- Intervals around discontinuity where the function changes sign may mistakenly be considered as an interval containing zero
- For example, when applied to $f(x)=1 / x$ near zero, the method may result in an interval around zero as the containing the zero, which obviously is wrong..
- Since the method is based on the Intermedate Value Theorem, it can only be applied function that are continuous on an interval around the searched zero.
- Also, the method can only be applied to functions changing sign around a zero. For example it can not apply to functions such as $f(x)=x^{2}, f(x)=1-\cos (x)$, near zero.

Example-I: Restrictions and alternatives

- Intervals around discontinuity where the function changes sign may mistakenly be considered as an interval containing zero
- For example, when applied to $f(x)=1 / x$ near zero, the method may result in an interval around zero as the containing the zero, which obviously is wrong..
- Since the method is based on the Intermedate Value Theorem, it can only be applied function that are continuous on an interval around the searched zero.
- Also, the method can only be applied to functions changing sign around a zero. For example it can not apply to functions such as $f(x)=x^{2}, f(x)=1-\cos (x)$, near zero.
- The method can be generalized to handle such situations.

Stages of numerical analysis(Example-II)

- Problem(determinig real zero of functon):Let f be a continuous function that changes sign over the end points of $[a, b]$, that is, $(f(a) f(b)<0)$. Determine an approximation for the zero of f over the interval $[a, b]$.

Stages of numerical analysis(Example-II)

- Problem(determinig real zero of functon): Let f be a continuous function that changes sign over the end points of $[a, b]$, that is, $(f(a) f(b)<0)$. Determine an approximation for the zero of f over the interval $[a, b]$.
- Solution to the problem exists due to the Intermediate Value Theorem for continuous functions.

Example-II:Numerical method(method of bisection)

- the method bisects the interval $[a, b]$,

Example-II:Numerical method(method of bisection)

- the method bisects the interval $[a, b]$,
- and determines subinterval containing zero, naming it again $[a, b]$

Example-II:Numerical method(method of bisection)

- the method bisects the interval $[a, b]$,
- and determines subinterval containing zero, naming it again $[a, b]$
- repeats the process as long as

Example-II:Numerical method(method of bisection)

- the method bisects the interval $[a, b]$,
- and determines subinterval containing zero, naming it again $[a, b]$
- repeats the process as long as
- $|f(c)|>\epsilon$ where $c=(a+b) / 2$ for a sufficiently small $\epsilon>0$

Example-II:Numerical method(method of bisection)

- the method bisects the interval $[a, b]$,
- and determines subinterval containing zero, naming it again $[a, b]$
- repeats the process as long as
- $|f(c)|>\epsilon$ where $c=(a+b) / 2$ for a sufficiently small $\epsilon>0$
- the midpoint of the last interval is assumed to be an approximaton for zero.

Example-II:Numerical method(method of bisection)

- Below are the subintervals and approximatons for zero of $f(x)=x^{2}-2$ over $[a, b]=[0,5]$

Example-II:Numerical method(method of bisection)

- Below are the subintervals and approximatons for zero of $f(x)=x^{2}-2$ over $[a, b]=[0,5]$

Example-II:Algorithm

(1) Input: f, a, b, ϵ.

Example-II:Algorithm

(1) Input: f, a, b, ϵ.
(2) $c=(a+b) / 2$

Example-II:Algorithm

(1) Input: f, a, b, ϵ.
(2) $c=(a+b) / 2$
(3) If $f(a) f(c)<0$ then $b=c$, else $a=c$

Example-II:Algorithm

(1) Input: f, a, b, ϵ.
(2) $c=(a+b) / 2$
(3) If $f(a) f(c)<0$ then $b=c$, else $a=c$
(9) while $|f(c)|>\epsilon$ writedown $a, c, b, f(c)$ and goto (2) else return c as the final approximation.

Örnek-II:Program(Kod)

(1) function $c=i k i b o l(f, a, b, e p s i l o n)$

Örnek-II:Program(Kod)

(1) function $c=i k i b o l(f, a, b, ~ e p s i l o n) ~$
(2) $\quad c=(a+b) / 2 ; f c=f(c)$;

Örnek-II:Program(Kod)

(1) function $c=i k i b o l(f, a, b, ~ e p s i l o n) ~$
(2) $c=(a+b) / 2 ; f c=f(c)$;
(3) fprintf(Format, $a, c, b, f c$);

Örnek-II:Program(Kod)

(1) function $c=i k i b o l(f, a, b, ~ e p s i l o n)$
(2)
$c=(a+b) / 2 ; f c=f(c) ;$
(3)
fprintf (Format, $a, c, b, f c$);
while abs $\left(f_{c}\right)>$ epsilon

Örnek-II:Program(Kod)

(1) function $c=i k i b o l(f, a, b, ~ e p s i l o n)$
(2)
$c=(a+b) / 2 ; f c=f(c) ;$
©
fprintf (Format, $a, c, b, f c$);
while abs $\left(f_{c}\right)>$ epsilon

$$
\text { if } f(a) * f c<0
$$

Örnek-II:Program(Kod)

(1) function $c=i k i b o l(f, a, b, ~ e p s i l o n)$
(2)
$c=(a+b) / 2 ; f c=f(c) ;$
©
fprintf (Format, $a, c, b, f c$);
while abs $\left(f_{c}\right)>$ epsilon

$$
\begin{aligned}
& \text { if } f(a) * f c<0 \\
& \quad b=c
\end{aligned}
$$

Örnek-II:Program(Kod)

(1) function $c=i k i b o l(f, a, b, ~ e p s i l o n)$
(2)
$c=(a+b) / 2 ; f c=f(c) ;$
©
fprintf (Format, $a, c, b, f c$);
while abs $\left(f_{c}\right)>$ epsilon

$$
\begin{aligned}
& \text { if } f(a) * f c<0 \\
& \quad b=c
\end{aligned}
$$

©
else

Örnek-II:Program(Kod)

(1) function $c=i k i b o l(f, a, b, ~ e p s i l o n)$
(2)
$c=(a+b) / 2 ; f c=f(c) ;$
©
fprintf (Format, $a, c, b, f c$);
while abs $\left(f_{c}\right)>$ epsilon

$$
\begin{aligned}
& \text { if } f(a) * f c<0 \\
& \quad b=c
\end{aligned}
$$

else

$$
a=c
$$

Örnek-II:Program(Kod)

(1) function $c=i k i b o l(f, a, b, e p s i l o n)$
(2)
$c=(a+b) / 2 ; f c=f(c) ;$
©
fprintf (Format, $a, c, b, f c$);
while abs $\left(f_{c}\right)>$ epsilon

$$
\begin{aligned}
& \text { if } f(a) * f c<0 \\
& \quad b=c
\end{aligned}
$$

else

$$
a=c
$$

0
end

Örnek-II:Program(Kod)

(1) function $c=i k i b o l(f, a, b, e p s i l o n)$
(2)
$c=(a+b) / 2 ; f c=f(c) ;$
©
fprintf (Format, $a, c, b, f c$);
while abs $\left(f_{c}\right)>$ epsilon

$$
\begin{gathered}
\text { if } f(a) * f c<0 \\
b=c \\
\text { else } \\
a=c \\
\text { end } \\
c=(a+b) / 2 ; f c=f(c) ;
\end{gathered}
$$

(10)

Örnek-II:Program(Kod)

(1) function $c=i k i b o l(f, a, b, e p s i l o n)$
(2)
$c=(a+b) / 2 ; f c=f(c) ;$
©
fprintf (Format, $a, c, b, f c$);
while abs $\left(f_{c}\right)>$ epsilon
if $f(a) * f c<0$

$$
b=c
$$

else

$$
a=c
$$

end
(1)

$$
c=(a+b) / 2 ; f c=f(c)
$$

(1) fprintf (Format, $a, c, b, f c$);

Örnek-II:Program(Kod)

(1) function $c=i k i b o l(f, a, b, e p s i l o n)$
(2)
$c=(a+b) / 2 ; f c=f(c) ;$
©
fprintf (Format, $a, c, b, f c$);
while abs $\left(f_{c}\right)>$ epsilon
if $f(a) * f c<0$

$$
b=c
$$

else

$$
a=c
$$

end
(10)

$$
c=(a+b) / 2 ; f c=f(c)
$$

(1) fprintf (Format, $a, c, b, f c$);
(1)
end

Example-II:Test

- Let's determine a zero of $f(x)=e^{x}-(x+2)$ on the interval $[0,2]$ using bisection method. We define f as

Example-II:Test

- Let's determine a zero of $f(x)=e^{x}-(x+2)$ on the interval $[0,2]$ using bisection method. We define f as

$$
f=@(x) \exp (x)-(x+2) ;
$$

Example-II:Test

- Let's determine a zero of $f(x)=e^{x}-(x+2)$ on the interval $[0,2]$ using bisection method. We define f as

$$
f=@(x) \exp (x)-(x+2) ;
$$

Example-II:Test

- If we run the code we have the values of $a, c, b, f(c)$ as tabulated below
>>ikibol(f, 0, 2, 1e-4)
$0.0000001 .0000002 .000000-0.281718$
1.0000001 .5000002 .0000000 .981689
1.0000001 .2500001 .5000000 .240343
$1.0000001 .1250001 .250000-0.044783$
1.1461931 .1461931 .1461930 .000000
ans $=1.1462$

Example-II:Test

- If we run the code we have the values of $a, c, b, f(c)$ as tabulated below
>>ikibol(f, 0, 2, 1e-4)
$0.0000001 .0000002 .000000-0.281718$
1.0000001 .5000002 .0000000 .981689
1.0000001 .2500001 .5000000 .240343
$1.0000001 .1250001 .250000-0.044783$
1.1461931 .1461931 .1461930 .000000
ans $=1.1462$
- Approximation for zero accurate to 15 decimal digits is $c=1.146193220620583$.

Example-II:Convergence analysis

- What can be said about

Example-II:Convergence analysis

- What can be said about
- the method's ability to determine a zero?

Example-II:Convergence analysis

- What can be said about
- the method's ability to determine a zero?
- the speed at which a zero can be determined?(that is convergence rate of the sequence consisting of the midpoints of each subinterval?

Example-II:Convergence analysis

- What can be said about
- the method's ability to determine a zero?
- the speed at which a zero can be determined?(that is convergence rate of the sequence consisting of the midpoints of each subinterval?

Teorem 1

Let f be a function that changes sign over the end points of the interval $[a, b]=\left[a_{1}, b_{1}\right], r$ be the zero of f within the interval $\left[a_{n}, b_{n}\right]$ with $f\left(a_{n}\right) f\left(b_{n}\right)<0$ and $\left\{c_{n}\right\}_{n=1}^{\infty}$ be the sequence of midpoints, that is, $c_{n}=\left(a_{n}+b_{n}\right) / 2$. Then

$$
\lim _{n \rightarrow \infty} c_{n}=r
$$

Example-II:Convergence analysis

Proof: For the zero r, at the n-th iteration we have

$$
\left|r-c_{n}\right| \leq \frac{b_{n}-a_{n}}{2}
$$

On the other hand, since the length of each subinterval is half of the previous one, we have

$$
\left|r-c_{n}\right| \leq \frac{b_{n}-a_{n}}{2}=\frac{b_{n-1}-a_{n-1}}{2^{2}}=\cdots=\frac{b_{1}-a_{1}}{2^{n}}
$$

from which we have $\lim _{n \rightarrow \infty}\left|r-c_{n}\right|=0$. The result follows from the inequality

$$
-\left|r-c_{n}\right| \leq r-c_{n} \leq\left|r-c_{n}\right|
$$

along with sandwitch theorem [7] .

Example-II:Convergence analysis

Tanım 1

Let $\left\{c_{n}\right\}_{n=0}^{\infty}$ be a sequence that converges to point r. If there exists a positive integer N such that the inequality

$$
\left|r-c_{n+1}\right| \leq \alpha\left|r-c_{n}\right|^{\beta}
$$

holds for all $n \geq N$ with $\alpha>0, \beta \geq 1$, then we say that the sequence $\left\{c_{n}\right\}_{n=1}^{\infty}$ is convergent of order β. If $\beta=1$ then for convergence we need to have $\alpha \in(0,1)$, in this case the squence is said to be linearly convergent. If $\beta=2$ then the squence is said to be quadratically convergent.

Example-II:Convergence analysis

- For the bisection method, comparing the inequality

$$
\left|r-c_{n+1}\right| \leq \frac{b_{n+1}-a_{n+1}}{2}=\frac{1}{2} \frac{b_{n}-a_{n}}{2}
$$

with

$$
\left|r-c_{n}\right| \leq \frac{b_{n}-a_{n}}{2}
$$

we have

$$
\left|r-c_{n+1}\right| \cong \frac{1}{2}\left|r-c_{n}\right|
$$

Then the method is linearly convergent. The approximate ratio $\left|r-c_{n+1}\right| /\left|r-c_{n}\right| \cong \frac{1}{2}$ is referred to be a mean convergence rate.

Example-II: Search for alternatives:method of divisions by secants

- Generally known as the method of Regula Falsi, instead of bisecting the current interval,

Example-II: Search for alternatives:method of divisions by secants

- Generally known as the method of Regula Falsi, instead of bisecting the current interval,
- one divides it at the point where the line, the so-called secant line, through the points $(a, f(a)),(b, f(b))$ intersects the x-axis.

Example-II: Search for alternatives:method of "divisions by secants"

- Another words, the zero of the first-degree polynomial through the points $(a, f(a)),(b, f(b))$ is assumed to be an approximation for the zero of f.

Example-II: Search for alternatives:method of "divisions by secants"

- Another words, the zero of the first-degree polynomial through the points $(a, f(a)),(b, f(b))$ is assumed to be an approximation for the zero of f.
- To determine the intersection point, we first look at the equation of secant line through the indicated points

$$
y=f(a)+\frac{f(b)-f(a)}{b-a}(x-a)
$$

Example-II: Search for alternatives:method of "divisions by secants"

- Another words, the zero of the first-degree polynomial through the points $(a, f(a)),(b, f(b))$ is assumed to be an approximation for the zero of f.
- To determine the intersection point, we first look at the equation of secant line through the indicated points

$$
y=f(a)+\frac{f(b)-f(a)}{b-a}(x-a)
$$

- Let's call the intersection point to be $x=c$, which can be determined from the above equation by taking $y=0$ as

$$
\begin{equation*}
c=a-f(a) \frac{(b-a)}{f(b)-f(a)} \tag{1}
\end{equation*}
$$

Example-II: Search for alternatives:method of "divisions by secants"

- Another words, the zero of the first-degree polynomial through the points $(a, f(a)),(b, f(b))$ is assumed to be an approximation for the zero of f.
- To determine the intersection point, we first look at the equation of secant line through the indicated points

$$
y=f(a)+\frac{f(b)-f(a)}{b-a}(x-a)
$$

- Let's call the intersection point to be $x=c$, which can be determined from the above equation by taking $y=0$ as

$$
\begin{equation*}
c=a-f(a) \frac{(b-a)}{f(b)-f(a)} \tag{1}
\end{equation*}
$$

- The procedure continues as long as $|f(c)|>$ epsilon. (One can define a better stopping criterion!).

Example-II: Search for alternatives:method of "divisions by secants"

- Another words, the zero of the first-degree polynomial through the points $(a, f(a)),(b, f(b))$ is assumed to be an approximation for the zero of f.
- To determine the intersection point, we first look at the equation of secant line through the indicated points

$$
y=f(a)+\frac{f(b)-f(a)}{b-a}(x-a)
$$

- Let's call the intersection point to be $x=c$, which can be determined from the above equation by taking $y=0$ as

$$
\begin{equation*}
c=a-f(a) \frac{(b-a)}{f(b)-f(a)} \tag{1}
\end{equation*}
$$

- The procedure continues as long as $|f(c)|>$ epsilon. (One can define a better stopping criterion!).
- prepare an algorithm to implement this method.

Example-II: Search for alternatives:method of "divisions by secants"

- Another words, the zero of the first-degree polynomial through the points $(a, f(a)),(b, f(b))$ is assumed to be an approximation for the zero of f.
- To determine the intersection point, we first look at the equation of secant line through the indicated points

$$
y=f(a)+\frac{f(b)-f(a)}{b-a}(x-a)
$$

- Let's call the intersection point to be $x=c$, which can be determined from the above equation by taking $y=0$ as

$$
\begin{equation*}
c=a-f(a) \frac{(b-a)}{f(b)-f(a)} \tag{1}
\end{equation*}
$$

- The procedure continues as long as $|f(c)|>$ epsilon. (One can define a better stopping criterion!).
- prepare an algorithm to implement this method.

Example-II: Search for alternatives:method of "secants"

- Contrary to the method of divisions by secants, one can lift the restriction to begin with an interval containing the zero and having to continue with the subinterval containing the same zero.

Example-II: Search for alternatives:method of "secants"

- Contrary to the method of divisions by secants, one can lift the restriction to begin with an interval containing the zero and having to continue with the subinterval containing the same zero.
- Instead, one may begin with two numbers a and b, assumed to be near the zero, and defines the first approximation as the c defined by 1 .

Example-II: Search for alternatives:method of "secants"

- Contrary to the method of divisions by secants, one can lift the restriction to begin with an interval containing the zero and having to continue with the subinterval containing the same zero.
- Instead, one may begin with two numbers a and b, assumed to be near the zero, and defines the first approximation as the c defined by 1.
- the procedure continues with new $\{a, b\}$ as $\{b, c\}$, that is $a=b, b=c$.

Example-II: Search for alternatives:method of "secants"

- Contrary to the method of divisions by secants, one can lift the restriction to begin with an interval containing the zero and having to continue with the subinterval containing the same zero.
- Instead, one may begin with two numbers a and b, assumed to be near the zero, and defines the first approximation as the c defined by 1.
- the procedure continues with new $\{a, b\}$ as $\{b, c\}$, that is $a=b, b=c$.
- the procedure continues as long as $|f(c)|>e p s i l o n$. The first c with $|f(c)| \leq e p s i l o n$ is assumed to be an approximation for the zero.

Example-II: Search for alternatives:method of "secants"

- Contrary to the method of divisions by secants, one can lift the restriction to begin with an interval containing the zero and having to continue with the subinterval containing the same zero.
- Instead, one may begin with two numbers a and b, assumed to be near the zero, and defines the first approximation as the c defined by 1.
- the procedure continues with new $\{a, b\}$ as $\{b, c\}$, that is $a=b, b=c$.
- the procedure continues as long as $|f(c)|>e p s i l o n$. The first c with $|f(c)| \leq e p s i l o n$ is assumed to be an approximation for the zero.
- prepare an algorithm to implement this method.

Example-II: Search for alternatives:method of "secants"

- Contrary to the method of divisions by secants, one can lift the restriction to begin with an interval containing the zero and having to continue with the subinterval containing the same zero.
- Instead, one may begin with two numbers a and b, assumed to be near the zero, and defines the first approximation as the c defined by 1.
- the procedure continues with new $\{a, b\}$ as $\{b, c\}$, that is $a=b, b=c$.
- the procedure continues as long as $|f(c)|>e p s i l o n$. The first c with $|f(c)| \leq e p s i l o n$ is assumed to be an approximation for the zero.
- prepare an algorithm to implement this method.
- prepare a code called secants to implement this method

Example-II: Search for alternatives:method of "secants"

- Contrary to the method of divisions by secants, one can lift the restriction to begin with an interval containing the zero and having to continue with the subinterval containing the same zero.
- Instead, one may begin with two numbers a and b, assumed to be near the zero, and defines the first approximation as the c defined by 1.
- the procedure continues with new $\{a, b\}$ as $\{b, c\}$, that is $a=b, b=c$.
- the procedure continues as long as $|f(c)|>e p s i l o n$. The first c with $|f(c)| \leq e p s i l o n$ is assumed to be an approximation for the zero.
- prepare an algorithm to implement this method.
- prepare a code called secants to implement this method
- Note the difference between divbysecants and secants

Example-II: Search for alternatives: Can we do better than the method of secants?

- Instad of starting with two points, now let's choose three points x_{0}, x_{1} and x_{2},

Example-II: Search for alternatives: Can we do better than the method of secants?

- Instad of starting with two points, now let's choose three points x_{0}, x_{1} and x_{2},
- Determine the x-intercept of the graph of second degree polynomial through th points $\left(x_{0}, f\left(x_{0}\right)\right),\left(x_{1}, f\left(x_{1}\right)\right),\left(x_{2}, f\left(x_{2}\right)\right)$ and call it x_{3} and take it as an approximation for the zero of f

Example-II: Search for alternatives: Can we do better than the method of secants?

- Instad of starting with two points, now let's choose three points x_{0}, x_{1} and x_{2},
- Determine the x-intercept of the graph of second degree polynomial through th points $\left(x_{0}, f\left(x_{0}\right)\right),\left(x_{1}, f\left(x_{1}\right)\right),\left(x_{2}, f\left(x_{2}\right)\right)$ and call it x_{3} and take it as an approximation for the zero of f
- Continue the previous step taking $x_{0}=x_{1}, x_{1}=x_{2}, x_{2}=x_{3}$ as long as $\left|f\left(x_{3}\right)\right|>$ epsilon

Example-II: Search for alternatives: Can we do better than the method of secants?

- Instad of starting with two points, now let's choose three points x_{0}, x_{1} and x_{2},
- Determine the x-intercept of the graph of second degree polynomial through th points $\left(x_{0}, f\left(x_{0}\right)\right),\left(x_{1}, f\left(x_{1}\right)\right),\left(x_{2}, f\left(x_{2}\right)\right)$ and call it x_{3} and take it as an approximation for the zero of f
- Continue the previous step taking $x_{0}=x_{1}, x_{1}=x_{2}, x_{2}=x_{3}$ as long as $\left|f\left(x_{3}\right)\right|>e p s i l o n$
- Choose the first point x_{3} with $\left|f\left(x_{3}\right)\right| \leq e p s i l o n$ as an approximation for zero.

Example-II: Search for alternatives: Can we do better than the method of secants?

- Instad of starting with two points, now let's choose three points x_{0}, x_{1} and x_{2},
- Determine the x-intercept of the graph of second degree polynomial through th points $\left(x_{0}, f\left(x_{0}\right)\right),\left(x_{1}, f\left(x_{1}\right)\right),\left(x_{2}, f\left(x_{2}\right)\right)$ and call it x_{3} and take it as an approximation for the zero of f
- Continue the previous step taking $x_{0}=x_{1}, x_{1}=x_{2}, x_{2}=x_{3}$ as long as $\left|f\left(x_{3}\right)\right|>$ epsilon
- Choose the first point x_{3} with $\left|f\left(x_{3}\right)\right| \leq e p s i l o n$ as an approximation for zero.
- The method outlined above is known as Muller's method([6]).

Example-III Determine a zero of a given continuous function near a given point x_{0}

- Problem: Let f be a continuous function over an interval in which it has a zero and x_{0} be a point near zero. Determine the zero of f near x_{0}

Example-III Determine a zero of a given continuous function near a given point x_{0}

- Problem: Let f be a continuous function over an interval in which it has a zero and x_{0} be a point near zero. Determine the zero of f near x_{0}
- Method(hybrid):

Example-III Determine a zero of a given continuous function near a given point x_{0}

- Problem: Let f be a continuous function over an interval in which it has a zero and x_{0} be a point near zero. Determine the zero of f near x_{0}
- Method(hybrid):
- First determine an interval containing zero using the method outlined in Example I.

Example-III Determine a zero of a given continuous function near a given point x_{0}

- Problem: Let f be a continuous function over an interval in which it has a zero and x_{0} be a point near zero. Determine the zero of f near x_{0}
- Method(hybrid):
- First determine an interval containing zero using the method outlined in Example I.
- Use the interval obtained above with bisection method ro determine the zero.

Example-III Determine a zero of a given continuous function near a given point x_{0}

- Problem: Let f be a continuous function over an interval in which it has a zero and x_{0} be a point near zero. Determine the zero of f near x_{0}
- Method(hybrid):
- First determine an interval containing zero using the method outlined in Example I.
- Use the interval obtained above with bisection method ro determine the zero.
- Algorithm is outlined below.

Example-III Algorithm(detemining zero of a function near a given point)

(1) Input f (continuous), x 0

Example-III Algorithm(detemining zero of a function near a given point)

(1) Input f (continuous), $x 0$
(2) Determine an interval $[a, b]$ containing zero of f using the method of Example I.

Example-III Algorithm(detemining zero of a function near a given point)

(1) Input f (continuous), $x 0$
(2) Determine an interval $[a, b]$ containing zero of f using the method of Example I.

Example-III Algorithm(detemining zero of a function near a given point)

(1) Input f (continuous), x 0
(2) Determine an interval $[a, b]$ containing zero of f using the method of Example I.
(3) - if $f(a)=0$ then $c=a$,

Example-III Algorithm(detemining zero of a function near a given point)

(1) Input f (continuous), x 0
(2) Determine an interval $[a, b]$ containing zero of f using the method of Example I.
(3) - if $f(a)=0$ then $c=a$, elseif $f(b)=0$ then $c=b$,

Example-III Algorithm(detemining zero of a function near a given point)

(1) Input f (continuous), x 0
(2) Determine an interval $[a, b]$ containing zero of f using the method of Example I.
(3) - if $f(a)=0$ then $c=a$, elseif $f(b)=0$ then $c=b$, else use the method of Example 2 with c=ikibol(f,a,b) and determine c

Example-III Algorithm(detemining zero of a function near a given point)

(1) Input f (continuous), x 0
(2) Determine an interval $[a, b]$ containing zero of f using the method of Example I.
(3) - if $f(a)=0$ then $c=a$, elseif $f(b)=0$ then $c=b$, else use the method of Example 2 with $c=i k i b o l(f, a, b)$ and determine c
(9) Output: c

Example-III: Program(Code)(detemining zero of a function near a given point)

- function $c=f$ sifir ($f, x 0$);

Example-III: Program(Code)(detemining zero of a function near a given point)

- function $c=f$ sifir ($f, x 0$);
- $X=\operatorname{bul}(f, x 0)$;

Example-III: Program(Code)(detemining zero of a function near a given point)

- function $c=f$ sifir ($f, x 0$);
- $X=\operatorname{bul}(f, x 0)$;
- if isempty (X)

Example-III: Program(Code)(detemining zero of a function near a given point)

- function $c=f$ sifir ($f, x 0$);
- $X=\operatorname{bul}(f, x 0)$;
- if isempty (X)
- $\quad c=[]$; return;

Example-III: Program(Code)(detemining zero of a function near a given point)

- function $c=f$ sifir ($f, x 0$);
- $X=\operatorname{bul}(f, x 0)$;
- if isempty (X)
- $\quad c=[] ;$ return;
- else

Example-III: Program(Code)(detemining zero of a function near a given point)

- function $c=f$ sifir ($f, x 0$);
- $X=\operatorname{bul}(f, x 0)$;
- if isempty (X)
- $\quad c=[] ;$ return;
- else

$$
a=X(1) ; b=X(2) ;
$$

Example-III: Program(Code)(detemining zero of a function near a given point)

- function $c=f$ sifir ($f, x 0$);
- $X=\operatorname{bul}(f, x 0)$;
- if isempty (X)
- $\quad c=[] ;$ return;
- else

$$
\begin{aligned}
& a=X(1) ; b=X(2) \\
& \quad \text { if } f(a)==0 c=a
\end{aligned}
$$

Example-III: Program(Code)(detemining zero of a function near a given point)

- function $c=f$ sifir ($f, x 0$);
- $X=\operatorname{bul}(f, x 0)$;
- if isempty (X)
- $\quad c=[] ;$ return;
- else

$$
\begin{aligned}
& a=X(1) ; b=X(2) \\
& \quad \text { if } f(a)=0 c=a ; \\
& \quad \text { elseif } f(b)==0 c=b ;
\end{aligned}
$$

Example-III: Program(Code)(detemining zero of a function near a given point)

- function $c=f$ sifir ($f, x 0$);
- $X=\operatorname{bul}(f, x 0)$;
- if isempty (X)
- $\quad c=[] ;$ return;
- else

$$
\begin{aligned}
& a=X(1) ; b=X(2) \\
& \quad \text { if } f(a)==0 c=a \\
& \quad \text { elseif } f(b)==0 c=b ;
\end{aligned}
$$

- else

Example-III: Program(Code)(detemining zero of a function near a given point)

- function $c=f$ sifir ($f, x 0$);
- $X=\operatorname{bul}(f, x 0)$;
- if isempty (X)
- $\quad c=[] ;$ return;
- else

$$
\begin{aligned}
& a=X(1) ; b=X(2) \\
& \quad \text { if } f(a)==0 c=a \\
& \quad \text { elseif } f(b)==0 c=b ;
\end{aligned}
$$

- else

$$
c=i k i b o l(f, a, b) ;
$$

Example-III: Program(Code)(detemining zero of a function near a given point)

- function $c=f$ sifir ($f, x 0$);
- $X=\operatorname{bul}(f, x 0)$;
- if isempty (X)
- $\quad c=[] ;$ return;
- else

$$
\begin{aligned}
& a=X(1) ; b=X(2) \\
& \quad \text { if } f(a)==0 c=a \\
& \quad \text { elseif } f(b)==0 c=b ;
\end{aligned}
$$

- else

$$
c=i k i b o l(f, a, b)
$$

end

Example-III: Program(Code)(detemining zero of a function near a given point)

- function $c=f$ sifir ($f, x 0$);
- $X=\operatorname{bul}(f, x 0)$;
- if isempty (X)
- $\quad c=[] ;$ return;
- else
- $\quad a=X(1) ; b=X(2)$;
- if $f(a)==0 c=a$;
- elseif $f(b)==0 c=b$;
- else

$$
c=i k i b o l(f, a, b)
$$

end

- end

Example-III: Test

- Determine the zero of $f(x)=\ln (x)-x+4$ near $x_{0}=4$

Example-III: Test

- Determine the zero of $f(x)=\ln (x)-x+4$ near $x_{0}=4$
- $\gg \mathrm{f}=@(\mathrm{x}) \log (\mathrm{x})-\mathrm{x}+4$
\gg fsifir(f,4)
ans =
5.7490

Example-III :Test

- The approximate zero can also be determined using fzero function of MATLAB/OCTAVE fzero:
>> fzero(f,4)
ans =
5.7490

Example-III :Test

- Determine the zero of $f(x)=x \sin (1 / x)$ near $x_{0}=4$.

Example-III :Test

- Determine the zero of $f(x)=x \sin (1 / x)$ near $x_{0}=4$.
- $\gg \mathrm{f}=$ © (x) $\mathrm{x} * \sin (1 / \mathrm{x})$
\gg fsifir (f,4)
ans =
0.3183

Exercises

1 Given

$$
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right], b=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right], X=\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

carry out numerical analysis of solving linear algebraic system $A X=b$ by the following steps
(1) If $\operatorname{det}(A) \neq 0$ then use Cramer's method. If $\operatorname{det}(A)=0$ then give a message to user saying that the method can't be implemented. .
(2) Prepare an algorithm for the method described in (a). The inputs should be the matrix $A_{2 \times 2}$ and vector $b_{2 \times 1}$ and output is the solution vector $X_{2 \times 1}$.
(3) Prepare a code for the algorithm in MATLAB/OCTAVE.

- Test your code with various coefficient matrices A and right hand side vectors b.

Exercises

2 Given the quadratic equation

$$
a x^{2}+b x+c=0
$$

carry out numerical analysis of solving the equation by the following steps
(1) If $a \neq 0$ then use the well known formulas for the roots, otherwise give a message to the user that it is not a quadratic equation..
(2) Prepare an algorithm for the method described in (a). Inputs should be the coeeficients a, b, c, and the outputs the roots(real or complex)
(3) Prepare a code for the algorithm in MATLAB/OCTAVE.
(9) Programınızı farklı a, b, c katsayıları için test yapınız.
(0) Make sure to handle the case $a=0$, as well.

Exercises

3 Following your analysis of question \#2, carry out numerical analysis of determining eigenvalues of a given matrix $A_{2 \times 2}$.
4 Intersection point or points(if any) of a circle with radius r and a parabola can be determined by solving the nonlinear algebraic system

$$
\begin{aligned}
x^{2}+y^{2} & =r^{2} \\
-a x^{2}+y & =0
\end{aligned}
$$

Carry out numerical analysis of solving this system. Inputs should be r and $a \neq 0$ and outputs the real solution(s) if any.
5 Given $f(x)=x^{2}-5 x, a=-2, b=3$. Determine the first three approximations for zero of f over the interval $[a, b]$ using method of
(1) bisection,
(2) division by secants and
(3) secants(Note that for the case of secants, a and b are the initial approximations, not the end points of the interval $[a, b]$)

Exercises

6 Given $f(x)=x^{3}-x-1, a=-2, b=3$. Determine the first three approximations for zero of f over the interval $[a, b]$ using method of
(1) bisection,
(2) division by secants and
(3) secants

7 By running the code "ikibol" for the following functions and intervals $[a, b]$ determine a zero of each. Take eps $=1 e-10$.
(1) $f(x)=x^{2}-5 x, a=-2, b=3$
(2) $f(x)=x^{3}-x-1, a=-2, b=3$
(3) $f(x)=\ln (x+1)-\frac{1}{4} x^{2}, a=1, b=4$
(1) $f(x)=5 e^{-x}-\cosh x, a=0, b=4$

Exercises

8 Repeat question \#7 for the method of division by secants.
9 Repeat question \#7 for the method of secants.
10 Develop an application with inputs f, a, b, eps, and method and output a zero of f. The input parameter "method" will take on a value of 1 (for bisection), 2(for division by secants), or 3(for the method of secants).

Exercises

11 For the functi ons defined in question $\# 7$, take $x_{0}=a$ (given in the same question) determine an interval containing a zero of f .
12 Use the code fsifir given above and fzero of MATLAB/OCTAVE to determine a zero of the functions defined in question 7. Take the a values therein as the initial guess.
13 The roots function of MATLAB/OCTAVE determines all zeros of polynomials with given coeficients.For example the command $\gg \operatorname{roots}\left(\left[\begin{array}{lll}a & b & c\end{array}\right]\right)$ determines all the roots of the polynomial

$$
p(x)=a x^{2}+b x+c
$$

Test question 7(a),(b) using roots function.

Exercises

14 Show that the x-intercept points $\left\{c_{n}\right\}$ of secant line $\left(a_{n}, f\left(a_{n}\right)\right),\left(b_{n}, f\left(b_{n}\right)\right)$ as used by the method of division by secants converges to a zero of f.
15 Test your computer's perfommance of numerical analysis using the following typical problems:

- Check the largest size of matrix you can produce using the command $\gg A=r a n d(n)$ with

$$
n=2000,4000,10000
$$

Exercises

14 Show that the x-intercept points $\left\{c_{n}\right\}$ of secant line $\left(a_{n}, f\left(a_{n}\right)\right),\left(b_{n}, f\left(b_{n}\right)\right)$ as used by the method of division by secants converges to a zero of f.
15 Test your computer's perfommance of numerical analysis using the following typical problems:

- Check the largest size of matrix you can produce using the command $\gg A=r a n d(n)$ with

$$
n=2000,4000,10000
$$

- Check the largest size of matrix you can invert using the command invert. Inverse of matrix, if exists, is determined by the command invert(A)

Exercises

14 Show that the x-intercept points $\left\{c_{n}\right\}$ of secant line $\left(a_{n}, f\left(a_{n}\right)\right),\left(b_{n}, f\left(b_{n}\right)\right)$ as used by the method of division by secants converges to a zero of f.
15 Test your computer's perfommance of numerical analysis using the following typical problems:

- Check the largest size of matrix you can produce using the command $\gg A=r a n d(n)$ with

$$
n=2000,4000,10000
$$

- Check the largest size of matrix you can invert using the command invert. Inverse of matrix, if exists, is determined by the command invert(A)
- Check the speed of the computation of determinant of a matrix on various sizes of matrices A, produced by rand command as defined above. Determinant of a matrix is determined by the line command $\gg \operatorname{det}(\mathrm{A})$.

Exercises

14 Show that the x-intercept points $\left\{c_{n}\right\}$ of secant line $\left(a_{n}, f\left(a_{n}\right)\right),\left(b_{n}, f\left(b_{n}\right)\right)$ as used by the method of division by secants converges to a zero of f.
15 Test your computer's perfommance of numerical analysis using the following typical problems:

- Check the largest size of matrix you can produce using the command $\gg A=r a n d(n)$ with

$$
n=2000,4000,10000
$$

- Check the largest size of matrix you can invert using the command invert. Inverse of matrix, if exists, is determined by the command invert(A)
- Check the speed of the computation of determinant of a matrix on various sizes of matrices A, produced by rand command as defined above. Determinant of a matrix is determined by the line command $\gg \operatorname{det}(\mathrm{A})$.
- Implement a similar test for the rank of a matrix, which is computed by the line command $\gg \operatorname{rank}(\mathrm{A})$

Bibliography

（1）Atkinson，K．An Introduction to Numerical Analysis，John Wiley \＆ Sons， 1988.
Coșkun，E．，MATLAB／OCTAVE ile Sayısal Hesaplama ve Kodlama（URL：erhancoskun．com．tr）．

囯 Coșkun，E．，Maxima ile Sembolik Hesaplama ve Kodlama（URL：erhancoskun．com．tr）．
（ Coș， Giriș（URL：erhancoskun．com．tr）．

國 Kincaid，D．，Cheney，W．，Numerical Analysis，Brooks／Cole， 1991.
图 Stoer，J．，Bulirsh，R．，Introduction to Numerical Analysis， Springer－Verlag， 1976.
圊 Zill，Dennis G．，Wright，Warren S．（çeviri Ed．Cangül，İ．N．）， Matematik Cilt 1，Nobel yayınevi， 2017.

